Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (03): 91-99    DOI:
    
Study on the Ability of Butanol Production of Different Bacteria with the Fermentable Sugar
GUO Yong-an1, TENG Ya-qun1, ZHU Ouhaodi1, DAU Yi-chen1, ZHA Jing-jing1, ZHU Xu1, ZENG Xiao1, XING Xiao-xue1, Mitchell Bieniek2, Garrett Flack2, LV Ji-hua1
1. The High School Affiliated to Renmin University of China, Beijing 100080, China;
2. Illinois Mathematics and Science Academy, Illinois 60506, U.S.A
Download: HTML   PDF(1288KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

With the development of the new generation of biomass energy, it has become a popular topic that to use fermentable sugar and Clostridia to produce butanol. The study is going to use Clostridium acetobutylicum AS1.7,Clostridium acetobutylicum AS1.132,Clostridium acetobutylicum AS1.134 and Clostridium beijerinckii NCMIB 8052,which can produce butanol in various sources of sugar by fermentation. By comparing growth behaviors, ratio of using sugars, yield of butanol and by-product, and endurance of butanol and xylose, we are going to find out the most suitable Clostridium, which can be used to the industrial. In the experiment, NCMIB8052 is the most outstanding Clostridium as it has the highest yield, relative high endurance and the ability using multiple sugars.



Key wordsBiomass      Butanol      Fermentation      Clostridium      Endurance      Xylose     
Received: 29 December 2011      Published: 25 March 2012
ZTFLH:  Q815  
Cite this article:

GUO Yong-an, TENG Ya-qun, ZHU Ouhaodi, DAU Yi-chen, ZHA Jing-jing, ZHU Xu, ZENG Xiao, XING Xiao-xue, Mitchell Bieniek, Garrett Flack, LV Ji-hua. Study on the Ability of Butanol Production of Different Bacteria with the Fermentable Sugar. China Biotechnology, 2012, 32(03): 91-99.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I03/91


[1] 吴瑕,顾丽莉,申立中,等. 燃料乙醇和车用乙醇汽油的发展动态研究.应用化工, 2009,38(7):1059-1063. Wu X,Gu L L,Shen L Z, et al. Study on the developing trend of fuel ethanol and ethanol gasoline for motor vehicles. Applied Chemical Industry, 2009, 38(7): 1059-1063.

[2] 梅允福. 国内外节能清洁车用乙醇汽油的应用现状及发展前景.甘肃化工, 2003,17(2):9-12. Mei Y F. Gansu Chemical Industry,2003, 17(2), 9-12.

[3] Johnson J L, Toth J, Santiwatanakul S, et al. Cultures of "Clostridium acetobutylicum" from Various Collections Comprise Clostridium acetobutylicum, Clostridium beijerinckii,and two other distinct types based on DNA-DNA reassociation.International Journal of Systematic Bacteriology, 1997,47(2): 420-424.

[4] Gu Y, Li J, Zhang L, et al.Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli. Journal of Biotechnology, 2009,143(4): 284-287.

[5] 苏海锋,杨登峰.拜氏梭菌Clostridium beijerinckii NCIMB 8052在木薯发酵中耐高浓度丁醇的菌株筛选.酿酒科技,2010(9):36-39. Su H F, Yang D F. Screening of Clostridium beijerinckii NCIMB 8052 strains with high concentration butanol tolerance in cassava fermentation. Liquor-Making Science &Technology, 2010,(9):36-39.

[6] Isar J, Rangaswamy V. Improved n-butanol production by solvent tolerant Clostridium beijerinckii. Biomass and Bioenergy,2012,37:9-15.

[7] Maddox I S, Steiner E, Hirsch S, et al. The Cause of "Acid Crash" and "Acidogenic Fermentations" During the Batch Acetone-Butanol-Ethanol(ABE) Fermentation Process. J Mol Microbiol Biotechnol, 2000, 2(1): 95-100.

[8] Thaddeus Chukwuemeka Ezeji, Nasib Qureshi, Hans Peter Blaschek.Bioproduction of butanol from biomass: from genes to bioreactors. Current Opinion in Biotechnology 2007, 18:220-227.

[1] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[2] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[3] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[4] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[5] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[6] Zhi-jin WEI,Xiao LI,Hao-nan WANG,Yong-hao YIN,Li-jun XI,Bao-sheng GE. Enhanced Biomass Production and Lipid Accumulation by Co-cultivation of Chlorella vulgaris with Azotobacter Mesorhizobium sp.[J]. China Biotechnology, 2019, 39(7): 56-64.
[7] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[8] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[9] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[10] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[11] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[12] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[13] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.
[14] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[15] Meng-tong QIN,Jing HU,Guan-hua LI. Recent Developments and Future Prospect of Biological Pretreatment[J]. China Biotechnology, 2018, 38(5): 85-91.