Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (5): 69-74    DOI:
    
Optimization of Erythritol Production by Moniliella acetoabutans Using Response Surface Methodology
LIU Peng, WANG Ze-nan, ZHANG Shi-fa, LI Ying
School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
Download: HTML   PDF(1127KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The culture medium and fermentation conditions of erythritol production by Moniliella acetoabutans was optimized by response surface methodology. According to the results of mono-factors experiments, a Plackett-Burman design was used to investigate and evaluate the influence of related factors, three factors are statistically significant: glucose concentration, initial pH value and temperature. Box-Behnken was employed to design. The quadratic regression analysis was conducted on the optimized results by using SAS software, it was found that the optimum conditions for erythritol production were glucose26%, yeast extract 0.4%, KH2PO4 0.2g/L,MnSO4·4H2O 0.05g/L,CuSO4·5H2O 0.04g/L, initial pH value 4.2, temperature 31℃, broth content 20%, shaking speed 150r/min, inoculum 4%. Under this condition, the concentration of erythritol reached to 75.63g/L in the shake-flask experiments after 90h fermentation, increased by 10.8% than before, the yield was 36.12%, increased by 9.4% than before.



Key wordsMoniliella acetoabutan      Erythritol      Plackett-Burman design      Response surface method     
Received: 28 December 2010      Published: 27 May 2011
ZTFLH:  Q939.97  
Cite this article:

LIU Peng, WANG Ze-nan, ZHANG Shi-fa, LI Ying. Optimization of Erythritol Production by Moniliella acetoabutans Using Response Surface Methodology. China Biotechnology, 2011, 31(5): 69-74.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I5/69


[1] Katsuhiko S, Arihiro T, Takashi Y, et al. Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42. Journal of Bioscience and Bioengineering, 2009, 108(5): 385-390.

[2] Katsushi N, Teiko H, Yasukazu A, et al. Identification of enzyme responsible for erythritol utilization and reaction product in yeast Lipomyces starkeyi. Journal of Bioscience and Bioengineering, 2006,101(4): 303-308.

[3] Den H J M, Boots A W, Perrot A A, et al. Erythritol is a sweet antioxidant .Nutrition,2010,26 (4):449-458.

[4] 范光先,张海平,诸葛健.耐高渗酵母产赤藓糖醇的影响因素.无锡轻工大学学报,2001,20(2):133-136. Fan G X, Zhang H P, Zhuge J. Journal of Wuxi University of Light Industry,2001,20(2):133-136.

[5] Hajny G J, Smith J H, Garver J C. Erythritol production by a yeastlike fungus. Appl Environ Microbiol, 1964,12(3): 240-246.

[6] Lee J K, Ha S J, Kim S Y, et al. Increased erythritol production in Torula sp. by Mn2+ and Cu2+. Biotechnology Letters, 2000,22(12): 983-986.

[7] Kim S Y, Lee K H, Kim J H, et al. Erythritol production by controlling osmotic pressure in Trigonopsis variabilis. Biotechnology Letters,1997,19(8):727-729.

[8] 刘鹏, 王泽南, 苏娅,等. 产赤藓糖醇菌株的筛选与鉴定.食品科学,2010,31(21): 308-311. Liu P, Wang Z N, Su Y, et al.Food Science,2010,31(21):308-311.

[9] Lin S J, Wen C Y, Liau J C, et al. Screening and production of erythritol by newly isolated osmophilic yeast-like fungi. Process Biochemistry, 2001, 36(12): 1249-1258.

[10] 毋锐琴, 杜双奎, 李志,等. 细菌纤维素发酵培养基的优化及超微观结构分析. 生物工程学报,2008, 24(6):1068-1074. Wu R Q, Du S Q, Li Z, et al. Chin J of Biotech, 2008,24 (6):1068-1074.

[11] Lin S J, Wen C Y, Wang P M, et al. High-level production of erythritol by mutants of osmophilic Moniliella sp .Process Biochemistry, 2010,45(6):973-979.

[1] Li-na GU,Liang-zhi LI,Wei-qiang GUO,Jing-sheng GU,Xue-mei YAO,Xin JU. The Regulation on Polyols Production by Trichosporonoides oedocephalis with HOG1 Inhibitors and Its Mechanism[J]. China Biotechnology, 2017, 37(12): 40-48.
[2] ZHANG Xu-ning, QUAN Chun-shan, LIAO Ying-ling, LIU Ke-huan, XIONG Wen, FAN Sheng-di. Expression,Purification and Identification of AgrA, a Response Regulator Protein of Two-component Signal Transduction System in Staphylococcus aureus[J]. China Biotechnology, 2015, 35(5): 32-40.
[3] LI Liang, WANG Ze-jian, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang. Mutagenesis Breeding and Optimization of Cephalosporin C by Cephalosporium acremonium[J]. China Biotechnology, 2014, 34(8): 61-66.
[4] HAN Qi-can, HUO Guang-hua, LUO Gui-xiang. Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens[J]. China Biotechnology, 2014, 34(5): 66-74.
[5] ZHANG Qi, NING Xi-bin, ZHANG Ji-lun. Optimization of Cultivation Conditions for Protease Production from Marine Bacteria by Response Surface Methodology[J]. China Biotechnology, 2013, 33(8): 105-110.
[6] WANG Dan, ZHENG Hong-li, JI Xiao-jun, GAO Zhen. Optimization the Accumulation of Astaxanthin in Chlorella Zofingiensis Using Response Surface Methodology[J]. China Biotechnology, 2013, 33(7): 71-81.
[7] ZHAO Fang-long, ZHU Ling-qing, YANG Xue, LU Wen-yu. Medium Optimization for Rhamnolipids Production by Pseudomonas aeruginosa O-2-2 and LC-MS/MS Analysis[J]. China Biotechnology, 2013, 33(6): 79-85.
[8] WU Ying-chun, MA Qin-qin, DING Xian-feng, ZHANG Kai, LIU Li-li, GUO Jiang-feng. Expression of XRN1 Protein and Optimization of Fermentation Medium with Response Surface Method[J]. China Biotechnology, 2013, 33(4): 121-128.
[9] SUN Guo-xia, WANG Jun, DING Wei-tong, WANG Kai-xuan, WU Fu-an. Process Optimization of Selectively Enzymatic Synthesis of Isoquercitrin Using Ionic Liquid[J]. China Biotechnology, 2013, 33(3): 130-134.
[10] WU Wei-ping, CHEN Jie, LI Ya-qian, CHEN Li-jie, DUAN Yu-xi. Optimization of Fermentation Process for Chlamydospores of Trichoderma asperellum by Response Surface Methodology[J]. China Biotechnology, 2013, 33(12): 97-104.
[11] ZHANG Wen, ZHANG Shu-qing, MA Xiao-tong, HE Cui-cui. The Optimization Research of Fermentation Medium of γ-Polyglutamic Acid(γ-PGA) Produced by Bacillus natto[J]. China Biotechnology, 2013, 33(11): 44-50.
[12] LI Rui-rui, LIU Dian-lei, YANG Qing, HAO Qiong, JIANG Kai-kai, LI Pi-wu. Optimization of Fermentation Conditions for Glucose Oxidase Production by Aspergillus niger using Response Surface Method[J]. China Biotechnology, 2013, 33(10): 111-116.
[13] CHEN Jie, WEI Hong-gang, LUO Yuan-chan, ZHANG Dao-jing, LI Shu-lan, TIAN Li, LI Yuan-guang. Medium Optimization for the Production of New Antifungl Cyclic Lipopeptide Marinhysin A by Bacillus Marinus B-9987[J]. China Biotechnology, 2013, 33(1): 84-89.
[14] CHEN Jie-mei, XU Cong-cong, CHANG Lei, LIU Yong-ping, MIAO Bing-xuan. Study on Optimization of Soybean Meal Solid-state Fermentation Process for Producing Soybean Antioxidative Peptide by Response Surface Methodology[J]. China Biotechnology, 2012, 32(12): 59-65.
[15] YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun. Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology[J]. China Biotechnology, 2012, 32(09): 70-75.