Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (10): 1-6    DOI:
    
The Effects of MGF-Ct24E on the Proliferation and Gene Expression of Primary Osteoblasts
XIN Juan1,2, LIN Fu-chun1,2, ZHANG Bing-bing1,2, XIANG Yan1,2, WANG Yuan-liang1,2
1. Key Laboratory of Biorheological Science and Technology Chongqing University, Ministry of Education, Chongqing 400030, China;
2. Research Center of Bioinspired Materials Science and Engineering of National "985 Project program" of China, Bioengineering College, Chongqing University, Chongqing 400030, China
Download: HTML   PDF(833KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To study the effect of the last 24 amino acids peptide(MGF-Ct24E) corredsponding to the C-terminal part of the mechano growth factor(MGF) E domain on bone formation in vitro, primary osteoblasts were obtained from neonatal rat. MTT assay and cell cycle assay were used to study the proliferation and cell cycle stage distribution of osteoblasts. The gene expression profile of osteoblasts after treat with MGF-Ct24E was measured by DNA microarray analysis. Quantitative PCR was used to verify the microarray data. The results suggested that the proliferation activity of MGF-Ct24E group was significantly higher at the first day compared with control. The significantly greater proportion of S and G2/M phase cells appeared in the MGF-Ct24E group than control. Microarray data showed that 1397 genes were identified to be differentially expressed in the MGF-Ct24E group. Among these identified genes,922 genes were up-regulated and 475 genes were down-regulated. Most of the differentially expressed genes were associated with the regulation of proliferation and differentiation, growth factor activity and binding. The effect of MGF-Ct24E on the regulation of cell proliferation and differentiation suggest a potential role in the treatment of bone repair.



Key wordsMGF-Ct24E      Osteoblast      Proliferation      Gene expression profile      Gene chip     
Received: 14 April 2011      Published: 25 October 2011
ZTFLH:  Q291  
Cite this article:

XIN Juan, LIN Fu-chun, ZHANG Bing-bing, XIANG Yan, WANG Yuan-liang. The Effects of MGF-Ct24E on the Proliferation and Gene Expression of Primary Osteoblasts. China Biotechnology, 2011, 31(10): 1-6.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I10/1


[1] Yang S Y, Goldspink G. Different roles of the IGF-I Ec peptide(MGF)and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett,2002, 522:156-160.

[2] Philippe M, Jean-Francois L, Basma Fattouma B, et al. A new pro-migratory activity on human myogenic precursor cells for a synthetic peptide within the E domain of the mechano growth factor. Exp Cell Res,2007, 313(3):527-537.

[3] Dluzniewska J, Sarnowska A, Beresewicz M, et al. A strong neuroprotective effect of the autonomous C-terminal peptide of IGF-1Ec (MGF) in brain ischemia. FASEB J,2005,19(11): 1896-1898.

[4] Carpenter V, Matthews K, Devlin G, et al. Mechano growth factor reduces loss of cardiac function in acute myocardial infarction. Heart Lung Circ,2008,17: 33-39.

[5] 廖保强,邓墨渊,傅亚,等. 力生长因子对兔桡骨骨折愈合的作用.中国组织工程研究与临床康复, 2010,14(2):245-248. Liao B Q, Deng M Y, Fu Y, et al. CRTER, 2010, 14(2):245-248.

[6] Tang L L, Wang Y L, Pan J, et al. The effect of step-wise increased stretching on rat calvarial osteoblast collagen production. J Biomech, 2004,37:157-161.

[7] 唐林,林珠,李永明,等.不同大小机械牵张力对成骨细胞增殖及碱性磷酸酶的影响. 解放军医学杂志,2006,31(6):580-581. Tang L, Lin Z, Li Y M, et al. Med J Chin PLA, 2006,31(6):580-581.

[8] 鲜成玉, 王远亮, 张兵兵, 等. 应力作用下成骨细胞内IGF-1的剪接变异及表达.科学通报,2006, 51(20): 2399-2403. Xian C Y, Wang Y L, Zhang B B, et al. Scintia, 2006, 51(20):2399-2403.

[9] 张兵兵,江鹏,鲜成玉, 等. 力生长因子在大肠杆菌中的表达及活性分析. 生物工程学报,2008,24(7):1180-1185. Zhang B B, Jiang P, Xian C Y, et al. Chin J Biotech,2008,24(7):1180-1185.

[10] 张兵兵,王远亮,杨力, 等. 力生长因子及其E肽对成骨细胞分化的影响. 生物化学与生物物理进展,2010, 37(3): 304-312. Zhang B B, Wang Y L, Yang L, et al. Prog Biochem Biophys, 2010, 37(3): 304-312.

[11] Kristen E G, David J B. The multi-functional role of insulin-like growth factor binding proteins in bone. Pediatr Nephrol,2005,20:261-268.

[12] Mohan S, Baylink D J. IGF binding proteins are multi-functional and act via IGF-dependent and IGF-independent mechanisms. J Endocrinol,2002, 175:19-31.

[13] Miyakoshi N, Richman C, Kasukawa Y, et al. Evidence that IGF-binding protein-5 functions as a growth factor. J Clin Invest,2001,107:73-81.

[14] Silha J V, Mishra S, Rosen C J, et al. Perturbations in bone formation and resorption in insulin-like growth factor binding protein-3 transgenic mice. J Bone Miner Res,2003,18:1834-1841.

[15] Nakamura T, Hanada K, Tamura M, et al. Stimulation of endosteal bone formation by systemic injections of recombinant basic fibroblast growth factor in rats. Endocrinology, 1995, 136:1276-1284.

[16] Marie P J, Debiais F, Hay E. Regulation of human cranial osteoblast phenotype by FGF-2, FGFR-2 and BMP-2 signaling.Histol Histopathol,2002, 17(3):877-888.

[1] LI Shi-rong,CHEN Yang-qin,ZHANG Chun-pan,QI Wen-jie. RS4651 Inhibits the EMT of Mouse Hepatocyte AML12 via Upregulating SMAD7[J]. China Biotechnology, 2021, 41(7): 1-9.
[2] OUYANG Qin,LI Yan-meng,XU An-jian,ZHOU Dong-hu,LI Zhen-kun,HUANG Jian. GTF2H2 Affects the Proliferation and Migration of Hep3B Hepatocellular Carcinoma Cells by Mediating AKT Signal Pathway[J]. China Biotechnology, 2021, 41(6): 4-12.
[3] TAO Shou-song,REN Guang-ming,YIN Rong-hua,YANG Xiao-ming,MA Wen-bing,GE Zhi-qiang. Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells[J]. China Biotechnology, 2021, 41(5): 1-7.
[4] LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui,YANG Hua. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells[J]. China Biotechnology, 2021, 41(4): 9-17.
[5] TANG Min,WAN Qun,SUN Shi-lei,HU Jing,SUN Zi-jiu,FANG Yu-ting,ZHANG Yan. The Effects of Hsa-miR-5195-3p on the Proliferation, Migration and Invasion of Human Cervical Cancer SiHa Cells[J]. China Biotechnology, 2020, 40(4): 17-24.
[6] YANG Dan,TIAN Hai-shan,LI Xiao-kun. Research Progress of Fibroblast Growth Factor 5[J]. China Biotechnology, 2020, 40(3): 117-124.
[7] GU Hao,GUO Xin-yu,DU Jing-jing,ZHANG Pei-wen,WANG Ding-guo,LIAO Kun,ZHANG Shun-hua,ZHU Li. The Effect of miR-186-5p on the Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2020, 40(3): 21-30.
[8] HE Xiu-juan,HU Feng-zhi,LIU Qiu-li,LIU Yu-ping,ZHU Ling,ZHENG Wen-yun. CRISPR / Cas9 Gene Editing of QSOX1 in Breast Cancer Cells and Its Effect on the Proliferation and Invasion[J]. China Biotechnology, 2020, 40(11): 1-9.
[9] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.
[10] DUAN Li-mei,YANG Jin-xiao,LIU Jia-yu,ZHENG Yong-bo,WU Xiao-hou,LUO Chun-li. shPLCε Inhibits Serine/Glycine Metabolism and Proliferation of Prostate Cancer via YAP Signaling Pathway[J]. China Biotechnology, 2019, 39(11): 1-12.
[11] Qun WAN,Meng-yao LIU,Jing XIA,Li-yao GOU,Min TANG,Shi-lei SUN,Yan ZHANG. The Effects of LncRNA SNHG3 on the Proliferation, Migration and Invasion of Human Breast Cancer MCF-7 Cells[J]. China Biotechnology, 2019, 39(1): 13-20.
[12] Li-yao GOU,Meng-yao LIU,Jing XIA,Qun WAN,Chi-lei SUN,Min TANG,Yan ZHANG. The Effects of Bone Morphogenetic Protein 9(BMP9) on the Proliferation and Migration of Human Bladder Cancer BIU-87 Cells[J]. China Biotechnology, 2018, 38(5): 10-16.
[13] Yi-man LI,Qin ZHOU. The Effects of Herpud1 on Metanephric Mesenchymal Cells and Its Mechanism[J]. China Biotechnology, 2018, 38(3): 9-15.
[14] Qiong YANG,Ling-hui WANG,Hao GU,Jing-jing DU,Jin-yuan LIU,Shun-hua ZHANG,Li ZHU. The Effect of miR-196a-5p on Proliferation and Differentiation of 3T3-L1 Preadipocyte[J]. China Biotechnology, 2018, 38(11): 9-17.
[15] FENG Yuan, TANG Yun, XU Lei, TAN Hai-gang. Algal Polysaccharides Inhibits Proliferation and Migration of Liver Cancer Cell Hep3B Via Down-regulation of EMP Pathway[J]. China Biotechnology, 2017, 37(9): 31-40.