Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (03): 71-75    DOI:
    
Study of Ethanol Fermentation by Immobilized Saccharomyces cerevisiae and Immobilized Microecology
WU Xiao-dan1, XU Er-ni1, XU Ying-xuan2, LUO Yu-fen1, LIU Yu-huan1,3
1. State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China;
2. Institute for Advanced Study, Nanchang University, Nanchang 330031, China;
3. The Engineering Research Center for Biomass Conversion, Nanchang University, Nanchang 330047, China
Download: HTML   PDF(611KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The ethanol fermentation ability of SA-PVA-SiO2 immobilized Saccharomyces cerevisiae and free S. cerevisiae was compared. In addition, batch fermentation was used to test the stability of ethanol fermentation of immobilized S. cerevisiae. The results showed that, the fermentation speed of SA-PVA-SiO2 immobilized S. cerevisiae was faster than free S. cerevisiae; the fermentation stability of the immobilized S. cerevisiae was good, the volume fraction of ethanol remained 3%~3.5 % when cultured at 30 ℃ for 24 hours using rubber plug and the shape of balls were still intact, not sticky afte 14 batches continuous fermentation; The internal immobilized environment was very conducive to the anaerobic fermentation to produce ethanol by SA-PVA-SiO2 immobilized S. cerevisiae.



Key wordsSaccharomyces cerevisiae      Immobilized      Ethanol      SEM     
Received: 21 September 2010      Published: 01 April 2011
ZTFLH:  TS26  
Cite this article:

WU Xiao-dan, XU Er-ni, XU Ying-xuan, LUO Yu-fen, LIU Yu-huan. Study of Ethanol Fermentation by Immobilized Saccharomyces cerevisiae and Immobilized Microecology. China Biotechnology, 2011, 31(03): 71-75.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I03/71

[1] Mitsuru W, Jyoji K, Ichiro C. Continuous production of ethanol using immobilized growing yeast cells. Applied Microbiology and Biotechnology, 1980, 10(4): 275-287.
[2] Tyagi R D, Ghose T K. Studies on immobilized Saccharomyces cerevisiae. I. Analysis of continuous rapid ethanol fermentation in immobilized cell reactor. Biotechnology and Bioengineering, 1982, 24(4): 781-795.
[3] Abbi M, Kuhad R C, Singh A. Bioconversion of pentose sugars to ethanol by free and immobilized cells of Candida shehatae (NCL-3501): Fermentation behaviour. Process Biochemistry, 1996, 31(6): 555-560.
[4] Najafpour G, Younesi H, Ismail K S K. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresource Technology, 2004, 92(3): 251-260.
[5] Fu N, Peiris P, Markham J, et al. A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzyme and Microbial Technology, 2009, 45(3): 210-217.
[6] 李峰, 吕锡武, 严伟. 聚乙烯醇作为固定化细胞包埋剂的研究. 中国给水排水, 2000, 16(12): 14-17. Li F, Lu X W, Yan W. China Water & Wastewater, 2000, 16(12): 14-17.
[7] Ting Y P, Sun G. Use of polyvinyl alcohol as a cell immobilization matrix for copper biosorption by yeast cells. Journal of Chemical Technology & Biotechnology, 2000, 75(7): 541-546.
[8] 李慧蓉, 尹艳, 高云霞. 聚乙烯醇包埋固定黄孢原毛平革菌方法的探讨. 江苏工业学院学报, 2003, 15(2): 5-8. Li H R, Yin Y, Gao Y X.Journal of Jiangsu Polytechnic University, 2003, 15(2): 5-8.
[9] 林松柏, 陈伟兵, 蒋妮娜, 等. SiO2/海藻酸钠复合水凝胶作为固定化纤维素酶载体. 复合材料学报, 2008, 25(6): 22-27. Lin S B, Chen W B, Jiang N N, et al.Acta Materiae Compositae Sinica, 2008, 25(6): 22-27.
[10] 宋向阳, 徐勇, 杨富国, 等. 海藻酸锰固定化细胞的乙醇发酵. 南京林业大学学报(自然科学版), 2003, 27(4): 1-4. Song X Y, Xu Y, Yang F G, et al.Journal of Nanjing Forestry University (Natural Sciences Edition), 2003, 27(4): 1-4.
[11] Coradin T, Livage J. Mesoporous alginate/silica biocomposites for enzyme immobilisation. Comptes Rendus Chimie, 2003, 6(1): 147-152.
[12] Yadav G D, Jadhava S R. Synthesis of reusable lipases by immobilization on hexagonal mesoporous silica and encapsulation in calcium alginate: Transesterification in non-aqueous medium. Microporous and Mesoporous Materials, 2005, 86(1-3): 215-222.
[13] 天津轻工业学院. 工业发酵分析. 北京: 中国轻工业出版社, 2009.64-66. Tianjin University of Science and Technology. Analysis of industrial fermentation. Beijing: China Light Industry Press, 2009.64-66.
[14] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2004.197-199. Li H S. Principles and techniques of the physical and chemical experiment on plants. Beijing: Higher Education Press, 2004.197-199.

[1] HUANG Lei,WAN Chang-qing,LIU Mei-qin,ZHAO Min,ZHENG Yan-peng,PENG Xiang-lei,YU Jie-mei,FU Yuan-hui,HE Jin-sheng. Construction of Recombinant Adenovirus Vectors Using the DNA Assembly Method[J]. China Biotechnology, 2021, 41(6): 23-26.
[2] YANG Yun-song,LIANG Jin-hua,YANG Xiao-rui,MA Yi-ming,JIN Shuang,SUN Yao-yao,ZHU Jian-liang. Research Progress in Oxidative Desulfurization of Diesel Oil Catalyzed by Enzymes[J]. China Biotechnology, 2021, 41(10): 109-115.
[3] DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate[J]. China Biotechnology, 2020, 40(4): 49-58.
[4] WANG Yan-wei,LI Peng-hao,LIANG Yan-yu,GUAN Yang,PANG Wen-qiang,TIAN Ke-gong. Efficient Assembly of Virus-like Particles of Porcine Circovirus Type 2[J]. China Biotechnology, 2020, 40(11): 35-42.
[5] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[6] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.
[7] Jian YAN,Lu-qiang JIA,Jian DING,Zhong-ping SHI. Enhancing pIFN-α Production by Pichia pastoris via Periodic Methanol Induction Control[J]. China Biotechnology, 2019, 39(6): 32-40.
[8] Feng-qin GONG,Qi-shun LIU,Hai-dong TAN,hua JIN,Cheng-yu TAN,Heng YIN. Immobilization of 5-Hydroxymethylfurfural Oxidase within MOFs for Catalysis[J]. China Biotechnology, 2019, 39(6): 41-47.
[9] Ya-li HAN,Guang-heng YANG,Yan-wen CHEN,Xiu-li GONG,Jing-zhi ZHANG. The Optimization of Self-deleting Lentiviral Vector Carrying Human β-globin Gene and Promoter[J]. China Biotechnology, 2018, 38(7): 50-57.
[10] Lu LIU,Liang YIN,Fei HUANG,Yong ZHANG,Qian LIU,Yan FENG. Construction of Intracellular Self-assembled Multienzyme Complex by SpyTag/SpyCatcher to Achieve Efficient Biosynthesis[J]. China Biotechnology, 2018, 38(7): 75-82.
[11] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[12] Hui-nan ZHANG,Meng-meng LI,Jing WEN,Shu-yi WU,Shi-jian LAN,Zhong-li LUO. Self-assembling Peptide R2I4R2 for Skin Wounds Repairing[J]. China Biotechnology, 2018, 38(2): 7-12.
[13] WU Lin-huan, LU Zhen-ming, GONG Jin-song, SHI Jin-song, XU Zheng-hong. Integrating Distributed Heterogeneous Food Microorganism Data by Semantic Web Technology[J]. China Biotechnology, 2017, 37(3): 124-132.
[14] Shan XU,Ren-qiang LI,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng Hu. Ethylene Glycol Diglycidyl Ether Cross-linked with Sodium Alginate- carboxymethyl Cellulose to Immobilize Lipase[J]. China Biotechnology, 2017, 37(12): 77-83.
[15] Xin-tong CHI,Shao-ming MAO. Optimization of Bioethanol Production by Brown Algae[J]. China Biotechnology, 2017, 37(12): 111-118.