Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (03): 39-45    DOI:
    
TAT Protein Transduction Peptide Mediated Heterologous Proteins Transduction in C.elegans
WU Yong-hong1, SHI Jin-ping1,2, HE Guo-wei1, REN Chang-hong1, GAO Yan1, ZHANG Cheng-gang1,2
1. Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China);
2. Department of Biology, Anhui Medical University, Anhui 230032, China
Download: HTML   PDF(794KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The TAT protein transduction peptide was enriched in basic amino acids and encoded by the HIV-1 virus. Previous studies have revealed that it could safely and efficiently mediate various heterologous biological macromolecules across a variety of biomembranes, such as the plasmid membrane and the blood-brain barrier et al. To further study its function in mediating heterologous proteins transduction in nematode in vivo, the prokaryotic expression vector pET28b-EGFP and pET28b-TAT-EGFP were constructed and induced by IPTG (final concentration 1 mmol/L), followed with the analysis on the expressed protein by fluorescence microscopy, SDS-PAGE and Western blot. Subsequently, the bacterial cells were coated to the LB medium and directly fed to the nematodes followed with capturing the image at 48 h. Results showed when fed to the nematodes for 48 h, the TAT-EGFP fluorescence signals were clearly distributed in the intestinal cells of the worm, while the EGFP fluorescence signals were mainly distributed in the intestinal cavity of the animal. Furthermore, the cellular morphology of TAT-EGFP had no distinct change compared with the EGFP group and controls. Taken together, the data suggested the TAT protein transduction peptide could mediate heterologous protein expression in C.elegans and provided an alternative approach for development of new drug transporter.



Key wordsTAT protein transduction peptide      Prokaryotic expression      C.elegans      Transmembrane transduction     
Received: 21 September 2010      Published: 01 April 2011
ZTFLH:  Q78  
Cite this article:

WU Yong-hong, SHI Jin-ping, HE Guo-wei, REN Chang-hong, GAO Yan, ZHANG Cheng-gang. TAT Protein Transduction Peptide Mediated Heterologous Proteins Transduction in C.elegans. China Biotechnology, 2011, 31(03): 39-45.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I03/39

[1] Greer E L, Maures T J, Hauswirth A G, et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C.elegans. Nature,2010,466(7304):383-387.
[2] Rieckher M, Kourtis N, Pasparaki A, et al. Transgenesis in Caenorhabditis elegans. Methods Mol Biol. 2009, 561(1):21-39.
[3] Shyu Y J, Hiatt S M, Duren H M,et al. Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Nat Protoc,2008, 3(4):588-596.
[4] Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem, 1997, 272(25):16010-16017.
[5] Palm-Apergi C, Eguchi A, Dowdy S F. PTD-DRBD siRNA delivery. Methods Mol Biol,2011,683(4):339-347.
[6] 吴永红, 张成岗. HIV-1 TAT蛋白转导肽的研究进展, 中国生物工程杂志, 2010, 30(10):1006-1014. Wu Y, Zhang C.China Biotechnology, 2010, 30(10):1006-1014.
[7] Green M, Loewenstein P M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988, 55(6):1179-1188.
[8] Frankel A D, Pabo C O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55(6):1189-1193.
[9] Derossi D, Joliot A H, Chassaing G. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem, 1994, 269(14):10444-10450.
[10] Han K, Jeon M J, Kim S H. Efficient intracellular delivery of an exogenous protein GFP with genetically fused basic oligopeptides. Mol Cells, 2001, 12(2):267-271.
[11] Jin L H, Bahn J H, Eum W S, et al. Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells. Free Radic Biol Med, 2001, 31(11):1509-1519.
[12] Park J, Ryu J, Jin L H, et al. 9-polylysine protein transduction domain:enhanced penetration efficiency of superoxide dismutase into mammalian cells and skin. Mol Cells, 2002, 13(2):202-208.
[13] Schwarze S R, Dowdy S F. In vivo protein transduction:intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci, 2000, 21(11):45-48.
[14] Rapoport M, Salman L, Sabag O, et al. Successful TAT-mediated enzyme replacement therapy in a mouse model of mitochondrial E3 deficiency. J Mol Med,2010 Nov 16. .
[15] Muniz L, Egloff S, Ughy B, et al. Controlling cellular P-TEFb activity by the HIV-1 transcriptional transactivator Tat. PLoS Pathog,2010, 6(10):e1001152.
[16] 陈菁, 刘树滔, 饶平凡, 等. PTD-Tat之C端融合在活体体内的跨膜递送作用. 福州大学学报, 2006, 34(2):301-304. Chen J, Liu S T, Rao P F, et al. Journal of Fuzhou University, 2006, 34(2):301-304.
[17] Wu Y H, Ren C H , Gao Y et al. A novel method for promoting heterologous protein expression in Escherichia coli by fusion with the HIV-1 TAT core domain. Amino Acids, 2010, 39(3):811-820.
[18] Fawell S, Seery J, Daikh Y, et al. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A, 1994, 91(2):664-668.
[19] Torchilin V P, Rammohan R, Weissig V, et al. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A, 2001, 98(15):8786-8791.
[20] Lewin M, Carlesso N, Tung C H, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol, 2000, 18(4):410-414.

[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[3] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[4] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[5] LI Tong-tong,SONG Cai-ling,YANG Kai-yue,WANG Wen-jing,CHEN Hui-yu,LIU Ming. Preparation and Neutralization Activity of Anti-Canine Parvovirus VP2 Protein Single-chain Antibody[J]. China Biotechnology, 2020, 40(4): 10-16.
[6] CHEN Qiu-li,YANG Li-chao,LI Hui,WEN Sha,LI Gang,HE Min. Prokaryotic Expression,Purification and Preparation of Polyclonal Antibody of Human Nek2 Protein[J]. China Biotechnology, 2020, 40(3): 31-37.
[7] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[8] Ming-ying LI,Ren-jun WANG,Fun ZHANG,Yan CHI. The Prokaryotic Expression and Activity Analysis of the Fifth Domain of β2GPⅠ and Its Mutants or Short Peptide Fragments[J]. China Biotechnology, 2018, 38(8): 1-9.
[9] Xiao-lu GUO,Xiu-fang GONG,Jia-feng CHEN,Chen-xi DING,Dan HU,Xiu-zhen PAN,Chang-jun WANG. Gene Cloning, Expression and Identification of Phosphoglyceric Kinase of Streptococcus suis Serotype 2[J]. China Biotechnology, 2018, 38(3): 16-23.
[10] Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System[J]. China Biotechnology, 2018, 38(2): 54-60.
[11] HE Ya-nan,SUN Yu-liang,REN Ya-kun,LIANG Sheng-ying,YANG Fen,LIU Yan-li,LIN Jun-tang. The Construction and Functional Analysis of Staphylococcal Enterotoxin-like K and GFP Fusion Protein[J]. China Biotechnology, 2018, 38(12): 14-20.
[12] Jian-wei REN,Jun LI,Shang-ze LI. Human CT55 Protein Prokaryotic Expression and Its Production of Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 1-8.
[13] SUN Wen-jia, YAO Yu-feng, YANG Xu, HUANG Wei-wei, LIU Cun-bao, LONG Qiong, CHU Xiao-jie, MA Yan-bing. Presentation of HPV 16L1 Peptide-based HBcAg Virus-like Particle and Induction of Specific Antibody[J]. China Biotechnology, 2017, 37(3): 58-64.
[14] TUERXUN Zulipiye, CAO Chun-bao, WEN Hao, DING Jian-bing, YIMITI Delixiati. Analysis of Gene Evolution, Protein Expression and Identification of Echinococcus granulosus EgG1Y162[J]. China Biotechnology, 2016, 36(4): 78-87.
[15] ZHOU Liang, YE Hao, ZHOU Li, GUAN Wen, LI Jing-jing, GAO Jin, HAN Wei, YU Yan. Prokaryotic Expression and Purification of Bioactive Human CXCL4[J]. China Biotechnology, 2016, 36(1): 7-13.