Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (03): 113-119    DOI:
    
Recent Progress in Renaturation of Inclusion Bodies of Prokaryotically Expressed Snake Venom Proteins
LIU Xiao-fei, PEI Jian-zhu, DU Guo-jun, YANG Zhang-min
College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
Download: HTML   PDF(456KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Insoluble, inactive inclusion bodies are often formed during prokaryotic expression of foreign genes. The formation of these deposits represents a major obstacle for the production of biologically active proteins for further investigation and application. However, after solubilization, isolation and refolding under suitable condition, inclusion bodies can convert to active proteins in vitro. So far, about eighteen snake venom proteins of eleven species in Viperidae and Elapidae(including metalloproteinases, phospholipase A2s, β-Bungarotoxin, cardiotoxins, serine proteases, nerve growth factors, C-type lectins) have been expressed in E. coli and successfully refolded by means of dilution, dialysis or chromatography. The refolding techniques for inclusion bodies of prokaryotically expressed snake venom proteins is summarized.



Key wordsInclusion body      Renaturation      Methodology      Snake venom protein     
Received: 08 October 2010      Published: 01 April 2011
ZTFLH:  Q786  
Cite this article:

LIU Xiao-fei, PEI Jian-zhu, DU Guo-jun, YANG Zhang-min. Recent Progress in Renaturation of Inclusion Bodies of Prokaryotically Expressed Snake Venom Proteins. China Biotechnology, 2011, 31(03): 113-119.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I03/113

[1] 陈念, 付晓燕, 江伟健, 等. 蛇毒蛋白的分类和应用. 中国新药志, 2009, 18(13): 1204-1209. Chen N, Fu X Y, Jiang W J, et al. Chinese Journal of New Drugs, 2009, 18(13):1204-1209.
[2] Lilie H, Schwarz E, Rudolph R. Advances in refolding of proteins produced in E. coli. Curr Opin Biotechnol, 1998, 9(5): 497-501.
[3] Fahnert B, Lilie H, Neubauer P. Inclusion bodies: formation and utilisation. Adv Biochem Eng Biotechnol, 2004, 89: 93-142.
[4] Bowden G A, Paredes A M, Georgiou G. Structure and morphology of protein inclusion bodies in Escherichia coli.Biotechnology, 1991, 9(8): 725-730.
[5] Carrió M M, Corchero J L, Villaverde A. Dynamics of in vivo protein aggregation:building inclusion bodies in recombinant bacteria. FEMS Microbiol Lett,1998, 169(1): 9-15.
[6] Villaverde A,Carrio M.Protein aggregation in recombinant bacteria:biological role of inclusion bodies.Biotechnol Lett, 2003, 25(17): 1385-1395.
[7] Ventura S.Sequence determinants of protein aggregation:tools to increase protein solubility.Microb Cell Fact, 2005, 4(1): 11-18.
[8] 王增, 马会勤,张文,等.包涵体蛋白的分离和色谱法体外复性纯化研究进展.中国生物工程杂志,2009,29(7):102-107. Wang Z, Ma H Q, Zhang W, et al. China Biotechnology, 2009,29(7):102-107.
[9] 黄泓, 张伟. 包含体的体外复性研究进展.生命的化学, 2003, 23(5): 397-400. Huang H, Zhang W. Chemistry of Life, 2003, 23(5): 397-400.
[10] Mayer M, Buchner J. Refolding of inclusion body proteins. Methods Mol Med, 2004, 94: 239-254.
[11] Willis M S, Hogan J K, Prabhakar P, et al. Investigation of protein refolding using a fractional factorial screen: a study of reagent effects and interactions. Protein Sci, 2005, 14(7): 1818-1826.
[12] Wetlaufer D B, Xie Y. Control of aggregation in protein refolding: a variety of surfactants promote renaturation of carbonic anhydrase II. Protein Sci, 1995, 4(8): 1535-1543.
[13] Das U, Hariprasad G, Ethayathulla A S, et al. Inhibition of protein aggregation: supramolecular assemblies of arginine hold the key. PLoS One, 2007, 2(11): e1176.
[14] 万雪, 王磊, 宁官保. 包涵体及其复性研究概况.畜牧兽医科技信息, 2005,(02): 13-15. Wang X, Wang L, Ning G B. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2005, (02): 13-15.
[15] 张婷婷, 叶波平. 包涵体蛋白质的复性研究进展.药物生物技术, 2007, 14(4): 306-309. Zhang T T, Ye B P. Chinese Journal Of Pharmaceutical Biotechnology, 2007, 14(4): 306-309.
[16] Lathrop B K, Burack W R, Biltonen R L, et al. Expression of a group II phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus in Escherichia coli: recovery and renaturation from bacterial inclusion bodies. Protein Expr Purif, 1992, 3(6): 512-517.
[17] Liang N S, Pungercar J, Krizaj I,et al. Expression of fully active ammodytoxin A, a potent presynaptically neurotoxic phospholipase A2, in Escherichia coli. FEBS Lett,1993, 334(1): 55-59.
[18] Chang L S, Wu P F, Chang C C. Expression of Taiwan banded krait phospholipase A2 in Escherichia coli, a fully active enzyme generated by hydrolyzing with aminopeptidase. Biochem Biophys Res Commun,1996, 225(3): 990-996.
[19] Chang L S, Wu P F, Lin J. cDNA sequence analysis and expression of cardiotoxins from Taiwan Cobra. Biochem Biophys Res Commun, 1996, 219(1): 116-121.
[20] Chang L S, Wu P F, Chang C C. cDNA sequence analysis and expression of the a chain of beta-bungarotoxin from Bungarus multicinctus (Taiwan banded krait). Biochem Biophys Res Commun, 1996, 221(2): 328-332.
[21] Chang L S, Lin J, Wu P F. cDNA sequence analysis and expression of cardiotoxin V and a new cardiotoxin VII from Naja naja atra (Taiwan cobra). Biochim Biophys Acta, 1996, 1295(1): 1-4.
[22] Chang L S, Chen K C, Wu B N, et al. Expression and mutagenesis studies of cobrotoxin from Taiwan cobra. Biochem Biophys Res Commun, 1999, 263(3): 652-656.
[23] Cheng Y C, Yan F J, Chang L S. Taiwan cobra chymotrypsin inhibitor: cloning, functional expression and gene organization. Biochim Biophys Acta, 2005, 1747(2): 213-220.
[24] 张守涛, 史婧, 郭蔼光.重组蛇毒纤溶酶 Fibrolase 的复性. 过程工程学报, 2007, 7(4): 761-766. Zhang S T, Shi J, Guo G G. The Chinese Journal of Process Engineering, 2007, 7(4): 761-766.
[25] Zhang S T, Lu P, Qin Y F, et al. Cloning and Identification of a Novel P-II Class Snake Venom Metalloproteinase from Gloydius halys. Appl Biochem Biotechnol, 2010, 162(5): 1391-402.
[26] Clark E D B. Refolding of recombinant proteins. Curr Opin Biotechnol, 1998, 9(2): 157-163.
[27] Kumar T K, Yang P W, Lin S H. Cloning, direct expression, and purification of a snake venom cardiotoxin in Escherichia coli. Biochem Biophys Res Commun, 1996, 219(2): 450-456.
[28] Liu X, Pan H, Yang G. Cloning, expression and biochemical characterization of a basic-acidic hybrid phospholipase A2-II from Agkistrodon halys pallas. Biochim Biophys Acta, 1999, 1431(1): 157-165.
[29] 郭丽英, 钟晓燕, 吴祥甫, 等. 江浙蝮蛇神经生长因子在大肠杆菌中的表达及纯化.生物工程学报, 1999, 15(3): 293-296. Guo L Y, Zhong X Y, Wu X F, et al. Chinese Journal of Biotechnology, 1999, 15(3): 293-296.
[30] Selistre-de-Araujo H S, de Souza E L, Beltramini L M. Expression, refolding, and activity of a recombinant nonhemorrhagic snake venom metalloprotease. Protein Expr Purif, 2000, 19(1): 41-47.
[31] Guo Y W, Chang T Y, Lin K T. Cloning and functional expression of the mucrosobin protein, a beta-fibrinogenase of Trimeresurus mucrosquamatus (Taiwan Habu). Protein Expr Purif, 2001,23(3): 483-490.
[32] Wu P F, Chang L S. Expression of A chain and B chain of beta-bungarotoxin from taiwan banded krait: the functional implication of the interchain disulfide bond between A chain and B chain. J Protein Chem, 2001, 20(5): 413-421.
[33] 向开军, 余红秀, 邹春森, 等. 皖南尖吻蝮蛇毒I型金属蛋白酶Acutolysin A的表达、重折叠及其生物学活性. 生物化学与生物物理学报, 2002, 34(5): 675-679. Xiang K J, Yu H X, Zou C S, et al. Acta Biochimica et Biophysica Sinica, 2002, 34(5): 675-679.
[34] 焦浩漭, 金茜, 赵晶晶, 等.江浙蝮蛇毒碱性磷脂酶A2的溶血位点.生物化学与生物物理学报, 2002, 34(3): 383-387. Jiao H M, Jin X, Zhao J J, et al.Acta Biochimica et Biophysica Sinica, 2002, 34(3): 383-387.
[35] 舒雨雁, 林文珍, 庄茂辛, 等. 广西眼镜王蛇毒酸性磷脂酶A2-1的表达. 现代临床医学生物工程学杂志, 2003, 9(1): 1-5. Shu Y Y, Lin W Z, Zhuang M X, et al. Journal of Modern Clinical Medical Bioengineering, 2003, 9(1):1-5.
[36] Ramos O H, Carmona A K, Selistre-de-Araujo H S. Expression, refolding, and in vitro activation of a recombinant snake venom pro-metalloprotease. Protein Expr Purif, 2003, 28(1): 34-41.
[37] Zha X D, Ren B, Liu J. cDNA cloning and high-level expression of a thrombin-like enzyme from Agkistrodon acutus venom. Methods Find Exp Clin Pharmacol, 2003, 25(4): 253-257.
[38] Roberto P G, Kashima S, Soares A M.Cloning and expression of an acidic platelet aggregation inhibitor phospholipase A2 cDNA from Bothrops jararacussu venom gland. Protein Expr Purif, 2004, 37(1): 102-108.
[39] 黄金路, 李招发, 戴红梅,等. 蛇毒金属蛋白酶Alfimeprase在大肠杆菌中的表达、 纯化及活性检测. 生物技术通报, 2007, 18(3): 409-411. Huang J L, Li Z F, Dai H M, et al. Biotechnology Bulletin, 2007, 18(3): 409-411.
[40] Li M, Su Z G, Janson J C. In vitro protein refolding by chromatographic procedures. Protein Expr Purif, 2004, 33(1): 1-10.
[41] Sahdev S, Khattar S K, Saini K S. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem, 2008, 307(1-2): 249-264.
[42] Ward R J, de Oliveira A H, Bortoleto R K. Refolding and purification of Bothropstoxin-I, a Lys49-phospholipase A2 homologue, expressed as inclusion bodies in Escherichia coli. Protein Expr Purif, 2001, 21(1): 134-140.
[43] 耿信笃, 白泉. 用疏水色谱复性并同时纯化蛋白质的机理及其应用.中国科学(B辑), 2002, 32(5): 460-471. Geng X D, Bai Q. Science In China (Chemistry), 2002, 32(5): 460-471.
[44] Gong B, Wang L, Wang C, et al. Preparation of hydrophobic interaction chromatographic packings based on monodisperse poly(glycidylmethacrylate-co-ethylenedimethacrylate) beads and their application. J Chromatogr A, 2004, 1022(1-2): 33-39.
[45] Lin L P, Lin Q, Wang Y Q. Cloning, expression and characterization of two C-type lectins from the venom gland of Bungarus multicinctus. Toxicon, 2007, 50(3): 411-419.
[46] 李军, 刘美杰, 李勇, 等.重组蛋白包涵体的研究进展.安徽农业科学, 2008, 36(31): 13552-13554. Li J, Liu M J, Li Y, et al. Journal of Anhui Agricultural Sciences, 2008, 36(31): 13552-13554.
[47] 高飞, 范清林, 邹文艺, 等.重组人干扰素α-2b的梯度凝胶色谱柱复性和同步纯化.中国医药工业杂志, 2007, 38(4): 269-273. Gao F, Fan Q L, Zou W Y, et al.Chinese Journal of Pharmaceuticals, 2007, 38(4): 269-273.
[48] Altamirano M M, García C, Possani L D, et al. Oxidative refolding chromatography: folding of the scorpion toxin Cn5. Nat Biotechnol, 1999, 17(2): 187-191.
[49] 庞怀宇, 吴娇娇, 李素霞, 等.正交试验优化黏质沙雷菌脂肪酶包涵体复性条件.食品与药品, 2010, 12(01): 4-6. Pang H Y, Wu J J, Li S X, et al. Food and Drug, 2010, 12(01): 4-6.
[50] 张颋, 王菊芳, 冯延叶, 等.可溶性预测模型在包涵体复性中的应用.南方医科大学学报, 2009, 29(11): 2156-2160. Zhang T, Wang J F, Feng T Y, et al. Journal of Southern Medical University, 2009, 29(11): 2156-2160.

[1] MENG Ying-ying, YAO Chang-hong, LIU Jiao, SHEN Pei-li, XUE Song, YANG Qing. Review and Evaluation of Microalgal Components Determination Methods[J]. China Biotechnology, 2017, 37(7): 133-143.
[2] LI Liang, WANG Ze-jian, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang. Mutagenesis Breeding and Optimization of Cephalosporin C by Cephalosporium acremonium[J]. China Biotechnology, 2014, 34(8): 61-66.
[3] HAN Qi-can, HUO Guang-hua, LUO Gui-xiang. Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens[J]. China Biotechnology, 2014, 34(5): 66-74.
[4] ZHANG Qi, NING Xi-bin, ZHANG Ji-lun. Optimization of Cultivation Conditions for Protease Production from Marine Bacteria by Response Surface Methodology[J]. China Biotechnology, 2013, 33(8): 105-110.
[5] WANG Dan, ZHENG Hong-li, JI Xiao-jun, GAO Zhen. Optimization the Accumulation of Astaxanthin in Chlorella Zofingiensis Using Response Surface Methodology[J]. China Biotechnology, 2013, 33(7): 71-81.
[6] ZHAO Fang-long, ZHU Ling-qing, YANG Xue, LU Wen-yu. Medium Optimization for Rhamnolipids Production by Pseudomonas aeruginosa O-2-2 and LC-MS/MS Analysis[J]. China Biotechnology, 2013, 33(6): 79-85.
[7] WU Wei-ping, CHEN Jie, LI Ya-qian, CHEN Li-jie, DUAN Yu-xi. Optimization of Fermentation Process for Chlamydospores of Trichoderma asperellum by Response Surface Methodology[J]. China Biotechnology, 2013, 33(12): 97-104.
[8] ZHANG Wen, ZHANG Shu-qing, MA Xiao-tong, HE Cui-cui. The Optimization Research of Fermentation Medium of γ-Polyglutamic Acid(γ-PGA) Produced by Bacillus natto[J]. China Biotechnology, 2013, 33(11): 44-50.
[9] HUANG Peng-huang, WANG Ze, TIAN Hai-shan, ZHAO Hai-yang, LI Hai-yan, LI Xiao-kun. The Constructing and Purification of Recombinant Human Fibroblast Growth Factor 8b Expressed Vector[J]. China Biotechnology, 2013, 33(1): 14-19.
[10] CHEN Jie, WEI Hong-gang, LUO Yuan-chan, ZHANG Dao-jing, LI Shu-lan, TIAN Li, LI Yuan-guang. Medium Optimization for the Production of New Antifungl Cyclic Lipopeptide Marinhysin A by Bacillus Marinus B-9987[J]. China Biotechnology, 2013, 33(1): 84-89.
[11] CHEN Jie-mei, XU Cong-cong, CHANG Lei, LIU Yong-ping, MIAO Bing-xuan. Study on Optimization of Soybean Meal Solid-state Fermentation Process for Producing Soybean Antioxidative Peptide by Response Surface Methodology[J]. China Biotechnology, 2012, 32(12): 59-65.
[12] YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun. Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology[J]. China Biotechnology, 2012, 32(09): 70-75.
[13] LI Qian-qian, LI Zhong-yuan, FENG Duo, HUANG Huo-qing, HAN Cui-xiao, YANG Pei-long, YAO Bin, GAO Wei. Optimizing Soluble Expression and Inclusion Body Renature Research of β-Propeller Phytase of Bacillus sp. HJB17 in E.coli[J]. China Biotechnology, 2012, 32(08): 49-55.
[14] AI Zuo-zuo, YAN Ri-ming, YUAN Jin-yun, ZHANG Zhi-bin, ZHU Du. Optimization of Single Cell Oil Produced from Cassava Starch by Response Surface Methodology[J]. China Biotechnology, 2012, 32(07): 66-72.
[15] GU Rui-meng, LI Yong-hao, TIAN Chao-guang. The Medium Optimization of Cellulases Fermentation of Neurospora crassa by Response Surface Methodology[J]. China Biotechnology, 2012, 32(03): 76-82.