Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (02): 95-101    DOI:
    
Compatible Solutes Ectoine and Its Derivate Hydroxyectoine
ZHU Dao-chen1,3, LIU Xing-rong2
1. School of Environmental Engineering, Jiangsu University, Zhenjiang 212013, China;
2. School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
3. Guangdong Institute of Microbiology, Guangzhou 510070, China
Download: HTML   PDF(563KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Ectoine and its derivatives are de novo synthesized by halophilic or halotolerant bacteria as compatible solutes.The characteristic of ectoines in biochemical and physiological role of osmotic stress defence in microorganisms was introduced, the protective properties of ectoines for cells were descirbed and transferred to enzyme, nucleic acid, and human skin ete. Data were analyzed and summarized in the synthesis pathway of ectoines and transporters system in the halophilic bacteria on the cell and molecular level, and the production of ectoines by halophic bacteria was described, such as downshock and milking process. In addition,the applications of ectoines were also summarized, which would be useful in the field of biology industry, medicine treatment and cosmetic for prevent aging of skin etc.



Key wordsEctoine      Hydroxyectoine      Compatible solutes      Halophilic bacteria      Biosynthesis      Transport mechanisms     
Received: 13 October 2010      Published: 18 February 2011
ZTFLH:  Q819  
Corresponding Authors: Daochen Zhu     E-mail: dczhucn@hotmail.com.
Cite this article:

ZHU Dao-chen, LIU Xing-rong. Compatible Solutes Ectoine and Its Derivate Hydroxyectoine. China Biotechnology, 2011, 31(02): 95-101.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I02/95

[1] Brown A D. Microbial water stress. Bacteriol Rev,1976,40: 803-846.
[2] Roberts M F. Osmoadaptation and osmoregulation in archaea: update 2004. Front Biosci, 2004, 9: 1999-2019.
[3] Galinski E A. Osmoadaptation in bacteria. Adv Microb Physiol, 1995, 37: 272-328.
[4] Galinski E A, Pfeiffer H P, Truper H G. 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem, 1985, 149: 135-139.
[5] Inbar L, Lapidot A. The structure and biosynthesis of new tetrahydropyrimidine derivatives in actinomycin D producer Streptomyces parvulus. J Biol Chem, 1988, 263: 16014-16022.
[6] Da Costa M S, Santos H, Galinski E A. An overview of the role and diversity of compatible solutes in bacteria and archaea. Adv Biochem Eng Biotechnol, 1998, 61: 117-153.
[7] Lippert K, Galinski E A. Enzyme stabilization by ectoine-type compatible solutes: protection against heating, freezing and drying. Appl Microbiol Biotechnol, 1992, 37: 61-65.
[8] Motitschke L, Driller H, Galinski E A. Ectoin and ectoin derivatives as moisturizer in cosmetics. U.S. patent US6060071, 2000.
[9] Kanapathipillai M, Lentzen G, Sierks M, et al. Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer's beta-amyloid. FEBS Lett, 2005, 579: 4775-4780.
[10] Kanapathipillai M, Ku S H, Girigoswami K, et al. Small stress molecules inhibit aggregation and neurotoxicity of prion peptide 106-126. Biochem Biophys Res Commun, 2008, 365: 808-813.
[11] Graf R, Anzali S, Buenger J, et al. The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol, 2008, 26: 326-333.
[12] Lentzen G, Schwarz T. Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol, 2006, 72: 623-634.
[13] Morozkina E V, Slutskaya E S, Fedorova T V, et al. Extremophilic microorganisms: biochemical adaptation and biotechnological application. Appl Microbiol Biotechnol, 2010, 46: 5-20.
[14] Held C, Neuhaus T, Sadowski G. Compatible solutes: Thermodynamic properties and biological impact of ectoines and pralines. Biophys Chem, 2010, 152: 28-39.
[15] Galinski E A, Herzog R M. The role of trehalose as a substitute for nitrogen-containing compatible solutes (Ectothiorhodospira halochloris). Arch Microbiol, 1990, 153: 607-613.
[16] Nagata S, Wang Y B. Accumulation of ectoine in the halotolerant Brevibacterium sp. JCM 6894. J Biosci Bioeng, 2001, 91:288-293.
[17] Eshinimaev B T, Tsyrenzhapova I S, Khmelenina V N, et al. Measurement of the content of the osmoprotectant ectoine in methylotrophic bacteria by means of normal-phase high performance liquid chromatography. App Biochem Microbi, 2007, 43:193-196.
[18] Kunte H J, Galinski E A, Trüper H G. A modified FMOC-method for the detection of amino acid type osmolytes and tetrahydropyrimidines (ectoines). J Microbiol Methods, 1993, 17: 129-136.
[19] Riis V, Maskow T, Babel W. Highly sensitive determination of ectoine and other compatible solutes by anion-exchange chromatography and pulsed amperometric detection. Anal Bioanal Chem, 2003, 377:203-207.
[20] Nagata S, Adachi K, Sano H. NMR analyses of compatible solutes in a halotolerant Brevibacterium sp. Microbiology, 1996, 142: 3355-3362.
[21] Zhu D, Niu L, Wang C, et al. Isolation and characterisation of moderately halophilic bacterium Halomonas ventosae DL7 synthesizing ectoine as compatible solute. Ann Microbiol, 2007, 57: 401-406.
[22] Martin D D, Ciulla R A, Roberts M F. Osmoadaptation in archaea. Appl Environ Microbiol, 1999, 65: 1815-1825.
[23] Jebbar M, von Blohn C, Bremer E. Ectoine functions as an osmoprotectant in Bacillus subtilis and is accumulated via the ABC transport system OpuC. FEMS Microbiol Lett, 1997, 154: 325-330.
[24] Bursy J, Kuhlmann A U, Pittelkow M,et al. Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol, 2008, 74: 7286-7296.
[25] Mustakhimov I I, Reshetnikov A S, Glukhov A S, et al. Identification and characterization of EctR1, a new transcriptional regulator of the ectoine biosynthesis genes in the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. J Bacteriol, 2010, 192(2): 410-417.
[26] Canovas D, Vargas C, Iglesias-Guerra F, et al. Isolation and characterization of salt-sensitive mutants of the moderate halophile Halomonas elongata and cloning of the ectoine synthesis genes. J Biol Chem, 1997, 272: 25794-25801.
[27] Calderon M I, Vargas C, Rojo F, et al. Complex regulation of the synthesis of the compatible solute ectoine in the halophilic bacterium Chromohalobacter salexigens DSM 3043T. Microbiology, 2004, 150: 3051-3063.
[28] Saum S H, Müller V. Growth phase-dependent switch in osmolyte strategy in a moderate halophile: ectoine is a minor osmolyte but major stationary phase solute in Halobacillus halophilus. Environ Microbiol, 2008, 10: 716-726.
[29] Pflughoeft K J, Kierek K, Watnick P I. Role of ectoine in Vibrio cholerae osmoadaptation. Appl Environ Microbiol, 2003, 69: 5919-5927.
[30] Zhu D, Cui S, Nagata S. Isolation and characterization of salt-sensitive mutants of the moderately halophilic bacterium, Salinivibrio costicola subsp. yaniae. Biosci Biotech Biochem, 2008, 72: 1977-1982.
[31] Louis P, Galinski E A. Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology, 1997, 143: 1141-1149.
[32] Guzmán H, Van-Thuoc D, Martín J, et al. A process for the production of ectoine and poly(3-hydroxybutyrate) by Halomonas boliviensis. Appl Microbiol Biotechnol, 2009, 84:1069-1077.
[33] Romano I, Nicolaus B, Lama L, et al. Accumulation of osmoprotectants and lipid pattern modulation in response to growth conditions by Halomonas pantelleriense. Syst Appl Microbiol, 2001, 24: 342-352.
[34] Canovas D, Vargas C, Calderon M I, et al. Characterization of the genes for the biosynthesis of the compatible solute ectoine in the moderately halophilic bacterium Halomonas elongata DSM 3043. Syst Appl Microbiol, 1998, 21: 487-497.
[35] Garcia-Estepa R, Argandona M, Reina-Bueno M, et al. The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens. J Bacteriol, 2006, 188: 3774-3784.
[36] Peters P, Galinski E A, TrUper H G. The biosynthesis of ectoine. FEMS Microbiol Lett, 1990, 71: 157-162.
[37] Ono H, Sawada K, Khunajakr N, et al. Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata. J Bacteriol, 1999, 181: 91-99.
[38] Canovas D, Borges N, Vargas C, et al. Role of Nγ-acetyldiaminobutyrate as an enzyme stabilizer and an intermediate in the biosynthesis of hydroxyectoine. Appl Environ Microbiol, 1999, 65: 3774-3779.
[39] Nagata S, Zhu D, Cui S, et al. Yield of compatible solute hydroxyectoine through direct synthesis and conversion from ectoine, In: Schafer H A,Wohlbier L M. Diamino Amino Acid Research. Nova Publishers, 2008. 139-153.
[40] Peter H, Weil B, Burkovski A, et al. Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: identification, sequencing and characterization of the praline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP. J Bacteriol, 1998, 180: 6005-6012.
[41] Tondervik A, Strom A R. Membrane topology and mutational analysis of the osmotically activated BetT choline transporter of Escherichia coli. Microbiology, 2007, 153: 803-813.
[42] Grammann K, Volke A,Kunte H J. New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581T. J Bacteriol, 2002, 184: 3078-3085.
[43] Tetsch L, Kunte H J. The substrate-binding protein TeaA of the osmoregulated ectoine transporter TeaABC from Halomonas elongata: purification and characterization of recombinant TeaA. FEMS Microbiol Lett, 2002, 211: 213-218.
[44] Harishchandra R K, Wulff S, Lentzen G, et al. The effect of compatible solute ectoines on the structural organization of lipid monolayer and bilayer membranes. Biophys Chem, 2010, 150: 37-46.
[45] Bolen D W, Baskakov I V. The osmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol, 2001, 310: 955-963.
[46] Yu I, Nagaoka M. Slowdown of water diffusion around protein in aqueous solution with ectoine. Chem Phys Lett, 2004, 388: 316-321.
[47] Liu Y, Bolen D W. The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry, 1995, 34: 12884-12891.
[48] Cioni P, Bramanti E, Strambini G B. Effects of sucrose on the internal dynamics of azurin. Biophys J, 2005, 88: 4213-4222.
[49] Malin G, Iakobashvili R, Lapidot A. Effect of tetrahydropyrimidine derivatives on protein-nucleic acids interaction. Type II restriction endonucleases as a model system. J Biol Chem, 1999, 274: 6920-6929.
[50] Zhu D, Zhang W, Zhang Q, et al. Accumulation and role of compatible solutes in bacterium Salinivibrio costicola subsp. yaniae with fast growth rate. Can J Microbiol, 2010, 56: 1-8.
[51] Frings E, Sauer T, Galinski E A. Production of hydroxyectoine: high cell-density cultivation and osmotic downshock of Marinococcus strain M52. J Biotechnol, 1995, 61: 117-158.
[52] Sauer T, Galinski E A. Bacterial milking: A novel bioprocess for production of compatible solutes. Biotechnol Bioeng, 1998, 57: 306-313.
[53] Doan V T, Héctor G, Jorge Q. High productivity of ectoines by Halomonas boliviensis using a combined two-step fed-batch culture and milking process. J Biotechnol, 2010, 147: 46-51.
[54] Prabhu J, Schauwecker F, Grammel N, et al. Functional expression of the ectoine hydroxylase gene (thpD) from Streptomyces chrysomallus in Halomonas elongate. Appl Environ Microbiol, 2004, 70: 3130-3132.
[55] Bursy J, Pierik A J, Pica N, et al. Osomtically induced synthesis of compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J Biol Chem, 2007, 282: 31147-31155.
[56] Lentzen G,Schwarz T. Extremolytes: natural compounds from extremophiles for versatile applications, Appl Microbiol Biotechnol, 2006, 72: 623-634.
[57] Orth D S, Appa Y. Glycerine: a natural ingredient for moisturizing skin. In:Loden M,Maibach H I. Dry Skin and Moisturizers. London: CRC Press,2000. 213-228.
[58] Sydlik U, Gallitz1 I, Albrecht1 C, et al. The Compatible solute ectoine protects against nanoparticle-induced neutrophilic lung inflammation. Am J Respir Crit Care Med, 2009, 180: 29-35.
[59] Schnoor M, Voss P, Cullen P, Boking T, et al. Characterization of the synthetic compatible solute homoectoine as a potent PCR enhancer. Biochem Biophys Res Commun, 2004, 322: 867-872.
[60] Faria T Q, Lima J C, Bastos M, et al. Protein stabilization by osmolytes from hyperthermophiles: effect of mannosylglycerate on the thermal unfolding of recombinant nuclease a from Staphylococcus aureus studied by picosecond time resolved fluorescence and calorimetry. J Biol Chem, 2004, 279: 48680-48691.
[61] Nakayama H, Yoshida K, Ono H, et al. Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol, 2000, 122: 1239-1247.

[1] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[2] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[3] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[4] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[5] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[6] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[7] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[8] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[9] DENG Ting-shan,WU Guo-gan,SUN Yu,TANG Xue-ming. Advances in Biosynthesis of Phenyllactic Acid[J]. China Biotechnology, 2020, 40(9): 62-68.
[10] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[11] Meng-ying OU,Xiao-zheng WANG,Shuang-jun LIN,Tong-wei GUAN,Yi-jin LIN. A Review of Studies on Streptonigrin[J]. China Biotechnology, 2019, 39(7): 100-107.
[12] Shuo XU,Wen-yu LU. Progress of Heterologous Biosynthesis of Terpenoids in Engineered Corynebacterium glutamicum[J]. China Biotechnology, 2019, 39(6): 91-96.
[13] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[14] ZHANG Ya-guang, ZHANG Chuan-bo, LU Wen-yu. Progress of Biosynthesis of Sophorolipids and Its Derivatives Production in Starmerella bombicola[J]. China Biotechnology, 2017, 37(9): 134-140.
[15] GAO Hong-jiang, LI Sheng-yan, WANG Hai, LIN Feng, ZHANG Chun-yu, LANG Zhi-hong. Progress on Function and Biosynthesis of Benzoxazinoids[J]. China Biotechnology, 2017, 37(8): 104-109.