Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (02): 23-29    DOI:
    
Purification and Characterization of CBL1 from Ammopiptanthus mongolicus
DING Zhi-qiang1, SHANG Gui-jun1,2, LI Na2, NIE Rong-xin2, ZHAO Zhi-hua1, CANG Huai-xing2
1. Beijing Forestry University, Beijing 100083, China;
2. Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
Download: HTML   PDF(1327KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

CBL is a member of newly identified calcium signal transmitting proteins. CBL-CIPK pathway played an essential role in responding to the biotic and abiotic stimuli in plant. CBL1 and its specified CIPKs are the main executors dealing with various environmental stressed such as low potassium, osmotic, drought, wound, and cold. Site-directed mutation of positive charged amino acid residue and methylation of Lys on the surface demonstrated that the non-specific aggregation of CBL1 from Ammopiptanthus mongolicus(AmCBL1) was result from the weak charges interaction between different molecules, and the trimer state may probably be the function unit for the AmCBL1 at the present of Ca2+. The homogeneous state of methylated AmCBL1 provided a solid foundation for its crystallization.



Key wordsAmmopiptanthus mongolicus      CBL1      Environmental stresses      Methylation      Site-directed mutation      Purification     
Received: 27 September 2010      Published: 18 February 2011
ZTFLH:  Q819  
Corresponding Authors: cang huaixing     E-mail: hxcang@gmail.com
Cite this article:

DING Zhi-qiang, SHANG Gui-jun, LI Na, NIE Rong-xin, ZHAO Zhi-hua, CANG Huai-xing. Purification and Characterization of CBL1 from Ammopiptanthus mongolicus. China Biotechnology, 2011, 31(02): 23-29.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I02/23

[1] Luan S, Kudla J, Rodriguez-Concepcion M, et al. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell, 2002, 14(5): 389-400.
[2] Bush D S. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46: 95-122.
[3] Trewavas A J, Malho R. Ca2+ signaling in plant cells:The big network. Curr Opin Plant Biol, 1998, 1(5): 428-433.
[4] Rudd J J, Franklin-Tong V E. Unravelling response-specificity in Ca2+ signaling pathways in plant cells. New Phytol, 2001, 151(1): 7-33.
[5] Zielinski R E. calmodulin and calmodulin-binding proteins in plants. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 697-725.
[6] Snedden W A, Fromm H. Calmodulin as a versatile calcium signal transducer in plants. New Phytol, 2001, 151(1): 35-66.
[7] Roberts D M, Harmon A C. Calcium-modulated proteins:targets of intracellular calcium signals in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 375-414.
[8] Harmon A C, Gribskov M, Harper J F. CDPKs——a kinase for every Ca2+ signal?. Trends Plant Sci, 2000, 5(4): 154-159.
[9] Albrecht V, Weinl S, Blazevic D, et al. The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J, 2003, 36(4): 457-470.
[10] Cheong Y H, Kim K N, Pandey G K, et al. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell, 2003, 15(8): 1833-1845.
[11] Pandey G K, Cheong Y H, Kim K N, et al. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell, 2004, 16(7): 1912-1924.
[12] Luan S. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci, 2008, 14(1): 37-42.
[13] Batistic O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophys Acta, 2009, 1793(6): 985-992.
[14] Kolukisaoglu U, Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol, 2004, 134(1): 43-58.
[15] Cheong Y H, Kim K N, Pandey G K, et al. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell, 2003, 15(8): 1833-1845.
[16] Li L, Kim B G, Cheong Y H, et al. A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103(33): 12625-12630.
[17] Xu J, Li H D, Chen L Q, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+. Cell, 2006, 125(7): 1347-1360.
[18] Lee S C, Lan W Z, Kim B G, et al. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci USA, 2007, 104(40): 15959-15964.
[19] Luan S, Lan W, Lee S C. Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL-CIPK network. Curr Opin Plant Biol, 2009, 12(3): 1-8.
[20] Chikano H, Ogawa M, Ikeda Y,et al. Two novel genes encoding SNF-1 related protein kinases from Arabidopsis thaliana: differential accumulation of AtSR1 and AtSR2 transcripts in response to cytokinins and sugars, and phosphorylation of sucrose synthase by AtSR2. Mol Gen Genet, 2001, 264(5): 674-681.
[21] Nozawa A, Koizumi N, Sano H. An Arabidopsis SNF1-related protein kinase, AtSR1, interacts with a calcium-binding protein, AtCBL2, of which transcripts respond to light. Plant Cell Physiol, 2001, 42(9): 976-981.
[22] Fuglsang A T, Guo Y, Cuin T A, et al. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H-ATPase by preventing interaction with 14-3-3 protein. Plant Cell, 2007, 19(5): 1617-1634.
[23] Qiu Q, Guo Y, Dietrich M A, et al. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3.Proc Natl Acad Sci USA, 2002, 99(12):8436-8441.
[24] Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273.
[25] Quan R D, Lin H X, Mendoza I, et al. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007, 19(14): 1415-1431.
[26] Kim B G, Waadt R, Cheong Y H, et al. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J, 2007, 52(3):473-484.
[27] Xie C G, Lin H X, Deng X W, et al. Roles of SCaBP8 in salt stress response. Plant Signaling & Behavior, 2009, 4(10): 956-958.
[28] Lin H X, Yang Y Q, Quan R D,et al. Phosphorylation of SOS3-like calcium binding protein8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell, 2009, 21(5): 1607-1619.
[29] Cheong Y H, Sung S J, Kim B G, et al. Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Mol Cells, 2010, 29(2):159-165.
[30] 周宜君,刘春兰,冯金朝,等.沙冬青抗旱、抗寒机理的研究进展.中国沙漠,2001,21(3):312-316. Zhou Y J, Liu C L, Feng J C, et al. China Desert, 2001,21(3):312-316.
[31] Guo L L, Yu Y H, Xia X L, et al. Identification and functional characterisation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus. BMC Plant Biology, 2010, 10:18.

[1] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[2] ZHANG Ling,CAO Xiao-dan,YANG Hai-xu,LI Wen-lei. The Application of Continuous Purification in Affinity Chromatography and Evaluation of Production Scale-up[J]. China Biotechnology, 2021, 41(6): 38-44.
[3] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[4] PENG Xiang-lei,WANG Ye,WANG Li-nan,SU Yan-bin,FU Yuan-hui,ZHENG Yan-peng,HE Jin-sheng. Single-Primer PCR for Site-Directed Mutagenesis[J]. China Biotechnology, 2020, 40(8): 19-23.
[5] JIANG Dan-dan,WANG Yun-long,LI Yu-lin,Zhang Yi-qing. Study on the Delivery of RGD Modified Virus-Like Particles to ICG Targeted Tumors[J]. China Biotechnology, 2020, 40(7): 22-29.
[6] XIE Hang-hang,BAI Hong-mei,YE Chao,CHEN Yong-jun,YUAN Ming-cui,MA Yan-bing. The Purification Procedure for the Recombinant HBcAg Virus-like Particle Easy to Generate Aggregation[J]. China Biotechnology, 2020, 40(5): 40-47.
[7] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[8] LIU Zhen-zhen,TIAN Da-yong. Development of Sucrose Density Gradient Centrifugation Purification Process for Rabies Vaccine[J]. China Biotechnology, 2020, 40(4): 25-33.
[9] ZHU Tong-tong,YANG Lei,LIU Ying-bao,SUN Wen-xiu,ZHANG Xiu-guo. Purification and Crystallization of PcCRN20-C from Phytophthora capsici[J]. China Biotechnology, 2020, 40(1-2): 116-123.
[10] PAN Bing-jv,ZHANG Wan-yi,SHEN Hui-tao,LIU Ting-ting,LI Zhong-yuan,LUO Xue-gang,SONG Ya-jian. Research Progress on Separation and Purification of Mannan Oligosaccharide[J]. China Biotechnology, 2020, 40(11): 90-95.
[11] Yu-feng XIE,Xue-mei HAN,Fu-ping LU. Expression, Purification and Enzymatic Properties of β-glucosidase from Lactobacillus paracasei[J]. China Biotechnology, 2019, 39(5): 72-79.
[12] JING Jia-mei,XUN Xin,WANG Min,PENG Ru-chao,SHI Yi. Expression and Purification of C-terminal of Arenavirus Polymerase and Screening of Crystallization Conditions[J]. China Biotechnology, 2019, 39(12): 18-23.
[13] ZHU Meng-lu,WANG Xue-yu,LIU Xin,LU Fu-ping,SUN Deng-yue,QIN Hui-min. Heterologous Expression, Purification and Enzymatic Properties of a Novel Leucine 5-Hydroxylase[J]. China Biotechnology, 2019, 39(12): 24-34.
[14] Chao-di TONG,Jian-ping WU,Li-rong YANG,Gang XU. Crystal Structural Analysis of DehDIV-R by X-ray Crystallography[J]. China Biotechnology, 2018, 38(8): 19-25.
[15] Jun-jun CHEN,Ying LOU,Yuan-xing ZHANG,Qin LIU,Xiao-hong LIU. Expression and Purification of Proliferating Cell Nuclear Antigen in Spodoptera frugiperda Cells[J]. China Biotechnology, 2018, 38(7): 14-20.