Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (01): 96-102    DOI:
    
Green Fluorescence Protein and its Application
DENG Chao1, HUANG Da-fang2, Song Fu-ping1
1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
2. Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Download: HTML   PDF(519KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The structure and fluorescence mechanism of green fluorescent proteins (GFP) have been well understood after decades of study. Based on these knowledge, scientists discovered and developed a range of novel fluorescent proteins (FPs) with a wide emission spectrum covering from 424~655 nm. With the colorful palette of FPs, new technologies such as fluorescence complementation (FC) fluorescence resonance energy transfer (FRET) and super-resolution imaging have been developed and act as powerful tools in biological and medical studies. The latest progress about the structure, chromophore maturation and fluorescence mechanism of GFP, as well as the extensive FP families and the new technologies based on them were provided.



Key wordsGreen fluorescent proteins (GFP)      Chromophore      Fluorescence mechanism      Application of fluorescence proteins     
Received: 25 October 2010      Published: 25 January 2011
ZTFLH:  Q946.1  
Cite this article:

DENG Chao, HUANG Da-fang, Song Fu-ping. Green Fluorescence Protein and its Application. China Biotechnology, 2011, 31(01): 96-102.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I01/96


[1] Shimomura O, Johnson F H, Saiga Y. Extraction, purification, and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol, 1962, 59: 223-239.

[2] Shimomura O, Johnson F H, Morise H. Mechanism of the luminescent intramolecular reaction of aequorin. Biochemistry, 1974, 13(16): 3278-3286.

[3] Prasher D, McCann R O, Cormier M J. Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochem Biophys Res Commun, 1985, 126(3): 1259-1268.

[4] Prasher D C, Eckenrode V K, Ward W W, et al. Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 1992, 111(2): 229-233.

[5] Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science, 1994, 263(5148): 802-805.

[6] Heim R, Prasher D C, Tsien R Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci,1994,91 (26): 12501-12504.

[7] Orm? M, Cubitt A B, Kallio K, et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science, 1996, 273 (5280): 1392-1395.

[8] Yang F, Moss L G, Phillips G N Jr. The molecular structure of green fluorescent protein. Nat Biotechnol, 1996, 14(10): 1246-1251.

[9] Wiedenmann J, Oswald F, Nienhaus G U. Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB Life, 2009, 61 (11): 1029-1042.

[10] Craggs T D. Green fluorescent protein: structure, folding and chromophore maturation. Chem Soc Rev, 2009, 38(10): 2865-2875.

[11] Zhang L, Patel H N, Lappe J W, et al. Reaction progress of chromophore biogenesis in green fluorescent protein. J Am Chem Soc, 2006, 128(14): 4766-4772.

[12] Brejc K, Sixma T K, Kitts P A , et al. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci, 1997, 94 (6): 2306-2311.

[13] Sniegowski J A, Lappe J W, Patel H N, et al. Base catalysis of chromophore formation in Arg96 and Glu222 variants of green fluorescent protein. J Biol Chem, 2005, 280(28): 26248-26255.

[14] Day R N, Davidson M W. The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev, 2009, 38 (10): 2887-2921.

[15] Piatkevich K D, Verkhusha V V. Advances in engineering of fluorescent proteins and photo-activatable proteins with red emission. Curr Opin Chem Biol, 2010 14(1): 23-29.

[16] Heim R, Cubitt A B, Tsien R Y. Improved green fluorescence. Nature, 1995, (6516): 663-664.

[17] Ilagan R P, Rhoades E, Gruber D F, et al. A new bright green-emitting fluorescent protein engineered monomeric and dimeric forms. FEBS J, 2010, 277(8): 1967-1978.

[18] Lin M Z, McKeown M R, Ng H L, et al. Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem Biol, 2009,16 (11): 1169-1179.

[19] Strack R L, Hein B, Bhattacharyya D, et al. A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochemistry, 2009, 48(35): 8279-8281.

[20] Sample V, Newman R H, Zhang J. The structure and function of fluorescent proteins. Chem Soc Rev, 2009, 38(10): 2852-2864.

[21] Pletnev S, Subach F V, Dauter Z, et al. Understanding blue-to-red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores. J Am Chem Soc, 2010, 132(7): 2243-2253.

[22] Kerppola T K. Visualization of molecular interactions using bimolecular fluorescence complementation analysis: characteristics of protein fragment complementation. Chem Soc Rev, 2009, 38(10): 2876-2886.

[23] Milev M P, Brown C M, Mouland A J. Live cell visualization of the interactions between HIV-1 Gag and the cellular RNA-binding protein Staufen1. Retrovirology, 2010 (1): 41.

[24] Frster T. Zwischenmolekulare energiewanderung and fluoreszenz. Ann. Physik. 1948, 437(1-2): 55-75.

[25] Shcherbo D, Souslova E A, Goedhart J, et al. Practical and reliable FRET/FLIM pair of fluorescent proteins. BMC Biotechnol, 2009, 9: 24.

[26] Galperin E, Verkhusha V V, Sorkin A. Three-chromophore FRET microscopy to analyze multi-protein interactions in living cells. Nat Methods, 2004, 1(3): 209-217.

[27] Kwaaitaal M, Keinath N F, Pajonk S, et al. Combined bimolecular fluorescence complementation and Frster resonance energy transfer reveals ternary SNARE complex formation in living plant cells. Plant Physiol, 2010, 152(3): 1135-1147.

[28] Huang B, Bates M, Zhuang X W. Super-resolution fluorescence microscopy. Annu Rev Biochem, 2009, 78(1): 993-1016.

[29] Patterson G, Davidson M, Manley S, et al. Superresolution imaging using single-molecule localization. Annu Rev Phys Chem. 2010(61): 345-367.

[30] Lippincott-Schwartz J, Patterson G H. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol. 2009, 19(11): 555-565.

[31] de Jong I G, Veening J W, Kuipers O P. Heterochronic phosphorelay gene expression as a source of heterogeneity in Bacillus subtilis spore formation. J Bacteriol, 2010, 192(8): 2053-2067.

[32] Pandey M, Syed S, Donmez I, et al. Coordinating DNA replication by means of priming loop and differential synthesis rate. Nature, 2009, 462(7275): 940-943.

[33] Ibraheem A, Campbell R E. Designs and applications of fluorescent protein-based biosensors. Curr Opin Chem Biol, 2010, 14(1): 30-36.

No related articles found!