Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (12): 87-94    DOI:
    
Progress of Chromosome Walking by PCR Amplification Techniques
LI Fu-peng1, WU Bao-duo2, MA Chao-zhi1, FU Ting-dong1
1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
2. Oil Crops Research Institute Chinese Academy of Agricultural Sciences, Wuhan 430062, China
Download: HTML   PDF(840KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

PCR-based chromosome walking is mainly applied to isolate flanking sequence of known sequence. It is convenient for gene cloning, obtaining regulatory elements and filling in gaps of whole genome sequencing. These methods can be classified into two sorts: dependent-ligation PCR and independent-ligation PCR. The technologies of PCR-based chromosome walking technologies in recent years and compares principles and procedures of these methods were outlined. The advantages and disadvantages of dependent-ligation PCR and independent-ligation PCR were summarized respectively, and their efficiency and usefulness were evaluated for investigator to select the appropriate method.



Key wordsChromosome walking      Polymerase chain reaction      Flanking sequence     
Received: 01 September 2010      Published: 25 December 2010
ZTFLH:  Q789  
Cite this article:

LI Fu-peng, WU Bao-duo, MA Chao-zhi, FU Ting-dong. Progress of Chromosome Walking by PCR Amplification Techniques. China Biotechnology, 2010, 30(12): 87-94.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I12/87

[1]   Fors L, Saavedra R A, Hood L. Cloning of the shark Po promoter using a genomic walking technique based on the polymerase chain reaction. Nucleic Acids Res, 1990, 18(9):2793-2799.
[2]   Riley J, Butler R, Ogilvie D, et al A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res, 1990, 18(10):2887-2890.
[3]   Copley C G, Boot C, Bundell K, et al Unknown sequence amplification: application to in vitro genome walking in Chlamydia trachomatis L2. Nature Biotechnology, 1991, 9(1):74-79.
[4]   Tsai Y L, Olson B H. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol, 1992, 58(7):2292-2295.
[5]   Tebbe C C, Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol, 1993, 59(8):2657-2665.
[6]   Jackson C R, Harper J P, Willoughby D, et al A simple, efficient method for the separation of humic substances and DNA from environmental samples. Appl Environ Microbiol, 1997, 63(12):4993-4995.
[7]   Triglia T, Peterson M G, Kemp D J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res, 1988, 16(16):8186.
[8]   Ochman H, Gerber A S, Hartl D L. Genetic applications of an inverse polymerase chain reaction. Genetics, 1988, 120(3):621-625.
[9]   Huang S H, Hu Y Y, Wu C H, et al A simple method for direct cloning cDNA sequence that flanks a region of known sequence from total RNA by applying the inverse polymerase chain reaction. Nucleic Acids Res, 1990, 18(7):1922.
[10]   Benkel B F, Fong Y. Long range-inverse PCR (LR-IPCR): extending the useful range of inverse PCR. Genet Anal, 1996, 13(5):123-127.
[11]   Kohda T, Taira K. A simple and efficient method to determine the terminal sequences of restriction fragments containing known sequences. DNA Res, 2000, 7(2):151-155.
[12]   Tsaftaris A, Pasentzis K, Argiriou A. Rolling circle amplification of genomic templates for inverse PCR (RCA-GIP): a method for 5’-and 3’-genome walking without anchoring. Biotechnol Lett, 2010, 32(1):157-161.
[13]   Tonooka Y,Fujiahima M.Comparison and critical eveluation of PCR-mediated methods to walk along the seguence of genomic DNA.Appl Microbiol Biotechnol,2009,85(1):37-43.
[14]   Shyamala V, Ames G F. Genome walking by single-specific-primer polymerase chain reaction: SSP-PCR. Gene, 1989, 84(1):1-8.
[15]   Shimada Y, Ohbayashi M, Nakano-Shimada R, et al. A novel method to clone P450s with modified single-specific-primer PCR. Plant Mol Biol Rep, 1999, 17(4):355-361.
[16]   Jones D H, Winistorfer S C. Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA. Nucleic Acids Res, 1992, 20(3):595-600.
[17]   Jones D H, Winistorfer S C. Genome walking with 2- to 4-kb steps using panhandle PCR. PCR Methods Appl, 1993, 2(3):197-203
[18]   Siebert P D, Chenchik A, Kellogg D E, et al An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res, 1995, 23(6):1087-1088.
[19]   Walser J C, Evgenv M B, Feder M E. A genomic walking method for screening sequence length polymorphism. Mol Ecol Notes, 2006, 6(2):563-567.
[20]   Zhang Z, Gurr S J. Walking into the unknown: a 'step down’ PCR-based technique leading to the direct sequence analysis of flanking genomic DNA. Gene, 2000, 253(2): 145-150.
[21]   Yan Y X, An C C, Li L, et al T-linker-specific ligation PCR (T-linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends. Nucleic Acids Res, 2003, 31(12):e68.
[22]   Acevedo J P, Reyes F, Parra L P, et al. Cloning of complete genes for novel hydrolytic enzymes from Antarctic sea water bacteria by use of an improved genome walking technique. J Biotechnol, 2008, 133(3):277-286.
[23]   Cormack R S, Somssich I E. Rapid amplification of genomic ends (RAGE) as a simple method to clone flanking genomic DNA. Gene, 1997, 194(2):273-276.
[24]   Parker J D, Rabinovitch PS, Burmer G C. Targeted gene walking polymerase chain reaction. Nucleic Acids Res, 1991, 19(11):3055-3060.
[25]   Lin X, Kelemen D W, Miller E S, et al Nucleotide sequence and expression of kerA, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1. Appl Environ Microbiol, 1995, 61(4):1469-1474.
[26]   Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995, 25(3):674-681.
[27]   Liu Y G, Mitsukawa N, Oosumi T, et al Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J, 1995, 8(3):457-463.
[28]   Singer T, Burke E. High-throughput TAIL-PCR as a tool to identify DNA flanking insertions. Methods Mol Biol, 2003, 236:241-272.
[29]   Pillai M M, Venkataraman G M, Kosak S, et al Integration site analysis in transgenic mice by thermal asymmetric interlaced (TAIL)-PCR: segregating multiple-integrant founder lines and determining zygosity. Transgenic Res, 2008, 17(4):749-754.
[30]   仇艳光, 田景汉, 葛荣朝, 等. TAIL-PCR的改良及其在分离小麦基因启动子中的应用.生物工程学报, 2008, 24(4):695-699. Qiu Y G, Tian J H, Ge R C, et al. Chin J Biotech, 2008, 24(4): 695-699.
[31]   Huang J, Tang D, Shen Y, et al Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.). J Genet Genomics, 2010, 37(1):23-36.
[32]   Myrick K V, Gelbart W M. Universal fast walking for direct and versatile determination of flanking sequence. Gene, 2002, 284(1-2):125-131.
[33]   Reddy PS, Mahanty S, Kaul T, et al A high-throughput genome-walking method and its use for cloning unknown flanking sequences. Anal Biochem, 2008, 381(2):248-253.
[34]   Dean F B, Nelson J R, Giesler T L, et al Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res, 2001, 11(6):1095-1099.
[35]   Lasken R S, Egholm M. Whole genome amplification: abundant supplies of DNA from precious samples or clinical specimens. Trends Biotechnol, 2003, 21(12):531-535.
[1] Shuai CUI,Zuo-ping WANG,Jiang-hui YU,Guo-ying XIAO. Event-specific Detection Methods of Genetically Modified Rice BPL9K-2[J]. China Biotechnology, 2018, 38(11): 32-41.
[2] DONG Juan, LI Fo-sheng, LUO Feng-Xue, XIA Fang, ZHU Shu-hua, TANG Lin. Cloning and Expression Analysis of Rice miRNA3026 Promoter and Thioredoxin OsTxnDC9[J]. China Biotechnology, 2016, 36(1): 29-37.
[3] HE Ya-nan, CHEN Xiao-li, REN Xiao-xia, HAO Hai-sheng, QIN Tong, ZHAO Xue-ming, LU Yong-qiang, WANG Dong. Research on Rurification of Mouse Spermatogonial Stem Cells Using Magnetic Microbeads[J]. China Biotechnology, 2014, 34(7): 38-43.
[4] LI Kun-peng, ZHU Hua-bin, HAO Hai-sheng, ZHAO Xue-ming, FENG Rong, QIN Tong, ZHANG Lin-bo, WANG Dong. The Strategies of Obtaining Full-length Sequence by PCR Amplification Technology[J]. China Biotechnology, 2012, 32(11): 115-123.
[5] LI Kun-peng, ZHU Hua-bin, HAO Hai-sheng, ZHAO Xue-ming, FENG Rong, QIN Tong, ZHANG Lin-bo, WANG Dong. The Strategies of Obtaining Full-length Sequence by PCR Amplification Technology[J]. China Biotechnology, 2012, 32(11): 115-123.
[6] WANG Ping, JIANG Mu-lan, ZHANG Yin-bo, WAN Xia, LIANG Zhuo, GONG Yang-min. Construction of a Novel Expression Vector with the Promoter of Phosphoglycerate Kinase Gene and Its Utilization of Heterogenous Gene Expression in Trichosporon fermentans[J]. China Biotechnology, 2012, 32(03): 39-46.
[7] HUO Nan, ZHANG Ming-hui, LIU Ying, QIU You-wen, AO Jin-xia, QU Bo, GAO Xue-jun. Establishment of Event Specific Qualitative PCR for Detecting Genetically Modified Wheat B73-6-1[J]. China Biotechnology, 2011, 31(10): 100-105.
[8] FENG Fei, XIE Zhen-wen, ZENG Mu-heng. Studies on Detection of Salmonella typhimurium in Food by Multiplex Polymerase Chain Methods[J]. China Biotechnology, 2011, 31(01): 65-69.
[9] SONG Feng, SUN Min, LUO Ke-Meng. A Simple and Rapid PCR-based Method for Identifying Transgenic Tobacco Plants Carrying a Single Copy of the Integrated Gene[J]. China Biotechnology, 2010, 30(04): 83-88.
[10] . Correction of a mutation in a synthetic gene by DREAM technique, a site-directed mutagenesis[J]. China Biotechnology, 2007, 27(1): 86-92.