Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (12): 116-122    DOI:
    
Research Progress in Phage Therapy of Bacterial Infections
JIANG Huan-huan, AN Xiao-ping, MI Zhi-qiang, TONG Yi-gang
Institute of Microbiology and Epidemiology, Academy of Military Science, Beijing 100071, China
Download: HTML   PDF(427KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Bacteriophage is the most abundant bacterial virus in nature. As the natural bacterium killer, it displays exceptionally more advantages than antibiotics to the treatment of bacterial infections especially multi-drug resistant bacterium. The historical and updated research progress in the treatment of bacterial infections employing live bacteriophage and bacteriophage-derived lysin was summarized. The major obstacles in phage therapy and some feasible resolutions were discussed. It is expected that phage therapy will attract renewed interest increasingly and will play more important role in the coming post-antibiotic era.



Key wordsPhage therapy      Phage lysine      Multi-drug resistant bacterium     
Received: 25 September 2010      Published: 25 December 2010
ZTFLH:  Q819  
Cite this article:

JIANG Huan-huan, AN Xiao-ping, MI Zhi-qiang, TONG Yi-gang. Research Progress in Phage Therapy of Bacterial Infections. China Biotechnology, 2010, 30(12): 116-122.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I12/116

[1]   Merril C R, Scholl D, Adhya S L.The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov, 2003, 2(6): 489-497.
[2]   Kumarasamy K K, Toleman M A, Walsh T R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. The Lancet Infectious Diseases, 2010, 10(9): 597-602.
[3]   Payne R J, Phil D, Jansen V A. Phage therapy: the peculiar kinetics of self-replicating pharmaceuticals. Clin Pharmacol Ther, 2000, 68(3): 225-230.
[4]   Smith H W, Huggins M B. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol, 1982, 128(2): 307-318.
[5]   Smith H W, Huggins M B. Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J Gen Microbiol, 1983, 129(8): 2659-2675.
[6]   Smith H W, Huggins M B, Shaw K M. The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J Gen Microbiol, 1987, 133(5): 1111-1126.
[7]   Barrow PA, Soothill J S. Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbiol, 1997, 5(7): 268-271.
[8]   Soothill J S. Treatment of experimental infections of mice with bacteriophages. J Med Microbiol, 1992, 37(4): 258-261.
[9]   Soothill J S. Bacteriophage prevents destruction of skin grafts by Pseudomonas aeruginosa. Burns, 1994, 20(3): 209-211.
[10]   Bogovazova G G, Voroshilova N N, Bondarenko V M. The efficacy of Klebsiella pneumoniae bacteriophage in the therapy of experimental Klebsiella infection. Zh Mikrobiol Epidemiol Immunobiol, 1991, 4: 5-8.
[11]   Kumari S, Harjai K, Chhibber S. Evidence to support the therapeutic potential of bacteriophage Kpn5 in burn wound infection caused by Klebsiella pneumoniae in BALB/c mice. J Microbiol Biotechnol, 2010, 20(5): 935-941.
[12]   Bull J J, Levin B R, DeRouin T, et al. Dynamics of success and failure in phage and antibiotic therapy in experimental infections. BMC microbiology, 2002, 2: 35.
[13]   Sulakvelidze A, Kutter E. Bacteriophage therapy in humans.In: Kutter E, Sulakvelidze A, eds. Bacteriophages: Biology and Application. Boca Raton: CRC Press, 2005, 2005: 381-436.
[14]   Bruttin A, Brussow H. Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrobial agents and chemotherapy, 2005, 49(7): 2874-2878.
[15]   Slopek S, Weber-Dabrowska B, Dabrowski M, et al. Result of bacteriophage treatment of suppurative bacterial infections in the years 1981-1986. Arch Immunol Ther Exp(Warsz), 1987, 35: 569-583.
[16]   Weber-Dabrowska B, Mulczyk M, Gorski A. Bacteriophage therapy of bacterial infection: An update of our institute,s experience. Arch Immunol Ther Exp(Warsz), 2000, 48: 547-551.
[17]   Miedzybrodzki R, Fortuna W, Weber-Dabrowska B, et al. Phage therapy of staphylococcal infections (including MRSA) may be less expensive than antibiotic treatment. Post pyhigieny imedycyny doswiadczalnej (online), 2007, 61: 461-465.
[18]   Krause R M. Studies on bacteriophages of hemolytic streptococci. I. Factors influencing the interaction of phage and susceptible host cell. J Exp Med, 1957, 106(3): 365-384.
[19]   Nelson D, Loomis L, Fischetti V A. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci U S A, 2001, 98(7): 4107-4112.
[20]   Yoong P, Schuch R, Nelson D, et al. Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol, 2004, 186(14): 4808-4812.
[21]   Zimmer M, Vukov N, Scherer S, et al. The murein hydrolase of the bacteriophage phi3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl Environ Microbiol, 2002, 68(11): 5311-5317.
[22]   Cheng Q, Nelson D, Zhu S, et al. Removal of group B streptococci colonizing the vagina and oropharynx of mice with a bacteriophage lytic enzyme. Antimicrob Agents Chemother, 2005, 49(1): 111-117.
[23]   Schuch R, Nelson D, Fischetti V A. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature, 2002, 418(6900): 884-889.
[24]   Rashel M, Uchiyama J, Ujihara T, et al. Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11. J Infect Dis, 2007, 196(8): 1237-1247.
[25]   Jado I, Lopez R, Garcia E, et al. Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J Antimicrob Chemother, 2003, 52(6): 967-973.
[26]   Loeffler J M, Djurkovic S, Fischetti V A. Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect Immun, 2003, 71(11): 6199-6204.
[27]   Brussow H, Hendrix R W. Phage genomics: small is beautiful. Cell, 2002, 108(1): 13-16.
[28]   Monk A B, Rees C D, Barrow P, et al. Bacteriophage applications: where are we now? Lett Appl Microbiol, 2010, 51: 363-369.
[29]   Garcia P, Martinez B, Obeso J M, et al. Bacteriophages and their application in food safety. Lett Appl Microbiol, 2008, 47(6): 479-485.
[30]   Wall S K, Zhang J, Rostagno M H, et al. Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Appl Environ Microbiol, 2010, 76(1): 48-53.
[31]   Fu W, Forster T, Mayer O, et al. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother, 2010, 54(1): 397-404.
[32]   Loeffler J M, Nelson D, Fischetti V A. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science, 2001, 294(5549): 2170-2172.
[33]   O'Flaherty S, Coffey A, Meaney W, et al. The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. Journal of Bacteriology, 2005, 187(20): 7161-7164.
[34]   Obeso J M, Martinez B, Rodriguez A, et al. Lytic activity of the recombinant staphylococcal bacteriophage PhiH5 endolysin active against Staphylococcus aureus in milk. Int J Food Microbiol, 2008, 128(2): 212-218.
[35]   Donovan D M, Lardeo M, Foster-Frey J. Lysis of staphylococcal mastitis pathogens by bacteriophage phi11 endolysin. FEMS Microbiol Lett, 2006, 265(1): 133-139.
[36]   During K, Porsch P, Mahn A, et al. The non-enzymatic microbicidal activity of lysozymes. FEBS Lett, 1999, 449(2-3): 93-100.
[37]   Orito Y, Morita M, Hori K, et al. Bacillus amyloliquefaciens phage endolysin can enhance permeability of Pseudomonas aeruginosa outer membrane and induce cell lysis. Appl Microbiol Biotechnol, 2004, 65(1): 105-109.
[38]   Yoichi M, Abe M, Miyanaga K, et al. Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. J Biotechnol, 2005, 115(1): 101-107.
[39]   Mahichi F, Synnott A J, Yamamichi K, et al. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol Lett, 2009, 295(2): 211-217.
[40]   Tetart F, Repoila F, Monod C, et al. Bacteriophage T4 host range is expanded by duplications of a small domain of the tail fiber adhesin. J Mol Biol, 1996, 258(5): 726-731.
[41]   Croux C, Ronda C, Lopez R, et al. Interchange of functional domains switches enzyme specificity: construction of a chimeric pneumococcal-clostridial cell wall lytic enzyme. Mol Microbiol, 1993, 9(5): 1019-1025.
[42]   Donovan D M, Dong S, Garrett W, et al. Peptidoglycan hydrolase fusions maintain their parental specificities. Appl Environ Microbiol, 2006, 72(4): 2988-2996.
[43]   Lopez R, Garcia E, Garcia P, et al. The pneumococcal cell wall degrading enzymes: a modular design to create new lysins? Microb Drug Resist, 1997, 3(2): 199-211.
[44]   Sheehan M M, Garcia J L, Lopez R, et al. Analysis of the catalytic domain of the lysin of the lactococcal bacteriophage Tuc2009 by chimeric gene assembling. FEMS Microbiol Lett, 1996, 140(1): 23-28.
[45]   Horgan M, O'Flynn G, Garry J, et al. Phage lysin LysK can be truncated to its CHA Pdomain and retain lytic activity against live antibiotic-resistant staphylococci. Applied and Environmental Microbiology, 2009, 75(3): 872-874.
[46]   Manoharadas S, Witte A, Blasi U. Antimicrobial activity of a chimeric enzybiotic towards Staphylococcus aureus. J Biotechnol, 2009, 139(1): 118-123.
[47]   Daniel A, Euler C, Collin M, et al. Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2010, 54(4): 1603-1612.
[48]   Djurkovic S, Loeffler J M, Fischetti V A. Synergistic killing of Streptococcus pneumoniae with the bacteriophage lytic enzyme Cpl-1 and penicillin or gentamicin depends on the level of penicillin resistance. Antimicrob Agents Chemother, 2005, 49(3): 1225-1228.
[49]   Loeffler J M, Fischetti V A. Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains. Antimicrob Agents Chemother, 2003, 47(1): 375-377.
[50]   Ibrahim H R, Yamada M, Matsushita K, et al. Enhanced bactericidal action of lysozyme to Escherichia coli by inserting a hydrophobic pentapeptide into its C terminus. J Biol Chem, 1994, 269(7): 5059-5063.
No related articles found!