Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (11): 88-93    DOI:
    
miRNA Quantification Methods Basing on PCR Technique
CHEN Xin, ZENG Chang-ying, LU Cheng, WANG Wen-quan
Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101,China
Download: HTML   PDF(1187KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

MicroRNA (miRNA) is a class of -21nt non-coding RNAs that regulate mRNAs at the post-transcriptional level, and widely play roles in eukaryotic growth and development, metabolism and stress responses. However, the biological functions of most miRNAs remain unclear. Investigating miRNAs’ spatial and temporal expression pattern through sensitively quantitative detection methods in different tissues, which is an important job to explore their functions. Therefore, focused on the basic principles and laboratory procedures of two classes and seven quantitative detection methods which based on PCR technology, and the differences and applications among them were analyzed.



Key wordsmiRNA      Probe      Fluorescent dyes      Quantitative PCR(qPCR)     
Received: 16 July 2010      Published: 19 November 2010
ZTFLH:  Q75  
Corresponding Authors: Xin Chen     E-mail: chenxin3189@yahoo.com.cn
Cite this article:

CHEN Xin, ZENG Chang-ying, LU Cheng, WANG Wen-quan. miRNA Quantification Methods Basing on PCR Technique. China Biotechnology, 2010, 30(11): 88-93.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I11/88

[1] Vaucheret H. Plant ARGONAUTES. Trends Plant Sci, 2008, 13:350-358.
[2] Mallory A C, Bouche N. MicroRNA-directed regulation: to cleave or not to cleave. Trends Plant Sci, 2008,13:359-367.
[3] Grosshans H, Filipowicz W. Proteomics joins the search for microRNA targets. Cell, 2008, 134:560-562.
[4] Jung J H, Seo P J, Park C M. MicroRNA biogenesis and function in higher plants. Plant Biotechnol Rep, 2009, 3:111-126.
[5] Willmann M R, Poethig R S. Conservation and evolution of miRNA regulatory programs in plant development. Curr Opin Plant Biol, 2007, 10:503-511.
[6] Terzi L C, Simpson G G. Regulation of flowering time by RNA processing. Curr Top Microbiol Immunol, 2008, 326:201-218.
[7] Gregory B D, O’Malley R C, Lister R,et al.A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell, 2008, 14:854-866.
[8] Takwi A, Li Y. The p53 pathway encounters the microRNA world. Curr Genomics, 2009, 10:194-197.
[9] Nelson P T, Wang W X, Rajeev B W. MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol, 2008, 18:130-138.
[10] Sunkar R, Chinnusamy V, Zhu J H, et al. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci, 2007, 12:301-309.
[11] Wheeler B M, Heimberg A M, Moy V N, et al. The deep evolution of metazoan microRNAs. Evol Dev, 2009, 11:50-68.
[12] Sunkar R, Jagadeeswaran G. In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol, 2008, 8:37-42.
[13] Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403: 901-906.
[14] Kapsimali M, Kloosterman W P, de Bruijn E et al. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol, 2007, 8: R173.
[15] Sood P, Krek A, Zavolan M, et al. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci USA, 2006, 103: 2746-2751.
[16] Lagos Q M, Rauhut R, Meyer J, et al. New microRNAs from mouse and human. RNA, 2003, 9:l75-l79.
[17] Sempere L F, Freemantle S, Pitha-Rowe I et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol, 2004, 5:Rl3.
[18] Castoldi M, Schmidt S, Benes V, et al. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA, 2006, 12:913-920.
[19] Nelson P T, Baldwin D A, Scearee L M. Microarry based highthrough put gene expression profiling of microRNAs. Nat Methods, 2004, 1:l55-l61.
[20] Chen C F, Ridzon D A, Broomer A J, et al. Real-time quantification of microRNAs by stem-loop RT-PCR.Nucleic Acids Res, 2005, 33(20): e179.
[21] Yang H P, Schmuke J J, Flagg L M, et al. A novel real-time polymerase chain reaction method for high throughput quantification of small regulatory RNAs. Plant Biotech,2009,7:621-630.
[22] Duncan D D, Eshoo M, Esau C,et al. Absolute quantitation of microRNAs with a PCR-based assay. Anal Biochem, 2006, 359:268-270.
[23] Shi R, Chiang V L. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques, 2005, 39:519-525.
[24] Christopher K R, Brians R, Philip G E, et al. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA, 2005, 11:1737-1744.
[25] Wang X W. A PCR-based platform for microRNA expression profiling studies. RNA, 2009, 15: 716-723.
[26] Sharbati-Tehrani S, Kutz-Lohroff B, Bergbauer R, et al. miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample. BMC Mol Biol, 2008, 9:34.
[27] Zeng C Y, Wang W Q, Zheng Y, et al. Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants. Nucleic Acids Res, 2009, 38(3):981-995.
[28] Allawi H T, Dahlberg J E, Olson S, et al. Quantitation of microRNAs using a modified Invader assay. RNA, 2004, 10(7): 1153-1161.
[29] Jiang M, Arzumanov A A, Gait MJ, et al. A bi-functional siRNA construct induces RNA interference and also primes PCR amplification for its own quantification. Nucleic Acids Res, 2005, 33:e151.
[30] Liu W L, Stevenson M, Seymour L W, et al. Quantification of siRNA using competitive qPCR. Nucleic Acids Res, 2009, 37(1):1 e4.
[31] Morozova O, Marra M A. Applications of next-generation sequencing technologies in functional genomics. Genomics, 2008, 92(5): 255-264.

[1] TANG De-ping,XING Meng-jie,SONG Wen-tao,YAO Hui-hui,MAO Ai-hong. Advance of microRNA Therapeutics in Cancer and Other Diseases[J]. China Biotechnology, 2021, 41(11): 64-73.
[2] CHEN Xue-yan,ZHANG Na,CHEN Juan,YANG Yan-hong,ZHANG Ju-feng. Effect of Hsa-miR-411-3P on Gastric Cancer Cells and Related Mechanisms[J]. China Biotechnology, 2020, 40(4): 1-9.
[3] LIU Li-yan,LIU Qi-qi,ZHANG Ying,WANG Sheng-qi. The Study of a Novel Nucleic Acid Detection Technology by Double-stranded Probe Real-time PCR[J]. China Biotechnology, 2020, 40(11): 28-34.
[4] Zhi-zhen LIU,San-san JIA,Kai-li ZHANG,Yu-qing SUN,Hong ZHAO,Yu-hui HAO,Bo NIU,Mei-ning LI. The Preparation and Application of the Ucp2 Gene RNA Probe Labeled by Digoxin[J]. China Biotechnology, 2018, 38(9): 55-58.
[5] Hao QIU,Ming-shu WANG,An-chun CHENG. γPNA——A New Type of High Efficient Peptide Nucleic Acid[J]. China Biotechnology, 2018, 38(2): 75-81.
[6] REN Shuang, ZHU Hong-liang. Establishment of Taqman Quantitative PCR System to Estimate Copy Numbers of Exogenous Transgene in Genome Edited Tomato[J]. China Biotechnology, 2017, 37(10): 72-80.
[7] TANG Zhi-xiong, GOU De-ming. Research Progress on miRNA Regulation of Myogenesis[J]. China Biotechnology, 2017, 37(10): 103-110.
[8] CHEN Min, CHEN Hui, BAO Hai, HUANG Peng, WANG Yan-wei. Advances in the Research of miRNA Promoters in Plants[J]. China Biotechnology, 2016, 36(5): 125-131.
[9] LIU Yi-xuan, BIAN Zhen, MA Hong-mei. Progress and Prospect of Cancer Gene Therapy[J]. China Biotechnology, 2016, 36(5): 106-111.
[10] LIANG Gao-feng, HE Xiang-feng, CHEN Bao-an. Progress in the Research of miRNA on Tumor Molecular Diagnosis and Therapy[J]. China Biotechnology, 2015, 35(9): 57-65.
[11] ZUO Hai-yang, CHEN Xiao-li, CAI Yong, HAO Hai-sheng, QIN Tong, ZHAO Xue-ming, LU Yong-qiang, WANG Dong. The Process of Methods on Validating the Differential Transcription of Genes[J]. China Biotechnology, 2015, 35(5): 96-102.
[12] LI Jun-e, JIA Li-juan, YAN Peng-cheng, YAN Xue-qing, XIE Guo-yun, CHEN Yu-bao. miRDOA:A Integrated Database of MicroRNA Include Data Storage and Online Analysis[J]. China Biotechnology, 2014, 34(11): 1-8.
[13] LI Hong-yi, XI Qian-yun, ZHANG Yong-liang. Identification miRNAs That Regulate Porcine TNF-α Expression Through Targeting TNF-α UTR[J]. China Biotechnology, 2014, 34(10): 35-40.
[14] TIAN Wen-hong, HU Jian-yang, DONG Xiao-yan, LI Ming-hao, WU Xiao-bing. Detection of miR-21 Activity in Normal Mouse Liver Using Biosensors[J]. China Biotechnology, 2013, 33(1): 60-66.
[15] WANG Jian-hua, GUO Ze-qin. Application of Peptide Nucleic Acid in Molecular Biotechnology[J]. China Biotechnology, 2013, 33(1): 90-94.