Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (11): 56-60    DOI:
    
Changing of Enzymes Activity and Microbe Quantity in Animal Manure during Composting
LI Min-qing, YUAN Ying-ying, YANG Jiang-zhou, ZHANG Jing, MENG Yong-hua, LI Hua-xing
College of Natural Resources and Environment South China Agricultural University, Guangzhou 510642, China
Download: HTML   PDF(641KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The experiment took chicken manure and pig manure to conduct composting experiment and researched on changes and interrelationships of enzyme activity and microbe quantity. The results showed that: the catalase activity and cellulose activity kept at a higher level in the early stage of composting, and then decreased quickly. Finally, the catalase activity between 9ml/g and 12ml/g, and the cellulose activity between 12.37mg/(kg·h) and 15.07mg/(kg·h). The trend of urease activity was "highed-lowed-highed". The trend of bacteria quantity was "low-high-low", actinomycetes quantity was "high-low" and fungi was "high-low-high". Through correlation analysis, the actinomycetes may was important factor that affected the change of catalase activity and cellulose activity. The actinomycetes had a significantly positive correlation with catalase in chicken manure, and had a positive correlation with catalase and cellulose in pig manure, and had a significantly positive correlation with catalase and cellulose in mixed chicken and pig manure.



Key wordsAnimal manure      Composting      Enzyme activity      Microbe quantity     
Received: 28 July 2010      Published: 19 November 2010
ZTFLH:  S141.4 Q554  
Cite this article:

LI Min-qing, YUAN Ying-ying, YANG Jiang-zhou, ZHANG Jing, MENG Yong-hua, LI Hua-xing. Changing of Enzymes Activity and Microbe Quantity in Animal Manure during Composting. China Biotechnology, 2010, 30(11): 56-60.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I11/56

[1] 李亚红,曹林奎.畜禽粪便好氧堆肥研究进展.农业科技通讯,2002,(12):23-24. Li Y H, Cao L K. Bulletin of Agricultural Science and Technology, 2002, (12): 23-24.
[2] Mars S, Gustafsson L, Beck-Friis B, et al. Improvement of the composting time for household waste during an initial low pH phase by mesophilic temperature control. Bioresource Technology, 2002, 84(3):237-241.
[3] 郑玉琪,陈同斌,孔建松,等.利用好氧速率判断好氧堆肥腐熟度的探讨.环境科学学报,2004,24(5):930-935. Zheng Y Q, Chen T B, Kong J S, et al. Acta Scientiae Circumstantiae, 2004, 24(5): 930-935.
[4] 侯宪文,邓晓,李光义,等.木薯皮堆肥过程中酶活性的变化.生态环境学报,2009,18(5):1976-1979. Hou X W, Deng X, Li G Y, et al. Ecology and Environmental Sciences, 2009, 18(5): 1976-1979.
[5] 黄得扬,陆文静,王洪涛.有机固体废物堆肥化处理的微生物学机理研究.环境污染治理技术与设备,2004,5(1):12-18. Huang D Y, Lu W J, Wang H T.Techniques and Equipment for Environmental Pollution Control,2004,5(1):12-18.
[6] 严昶升.土壤肥力研究方法.北京:农业出版社,1988.243-245. Yan Y S. Study Method of Soils Fertility. Beijing:Agriculture Publishing House, 1988.243-245.
[7] 关松荫.土壤酶及其研究法.北京:农业出版社,1986.291-297. Guang S Y. Study Method of Soil Enzymes. Beijing: Agriculture Publishing House, 1986.291-297.
[8] 中华人民共和国卫生部. 中华人民共和国标准粪便无害化卫生标准(GB/T 7959-1987). 中国标准出版社. 2005. Ministry of Health of the People's Republic of China. Sanitary Standard for the Non-Hazardous Treatment of Night Soil(GB/T 7959-1987). China Standard Press. 2005.
[9] Kenneth E H. Extra cellular free radical biochemistry of ligninolyticfungi. New Journal of Chemistry, 1991, 20(2):195-198.
[10] 谭小琴,邓良伟,伍钧,等.猪场废水堆肥化处理过程中微生物及酶活性的变化.农业环境科学学报,2006,25(1):244-248. Tan X Q, Deng L W, Wu J, et al. Journal of Agro-Environment Science,2006,25(1):244-248.
[11] 朴哲,崔宗均,苏宝林.高温堆肥的生物化学变化特征及植物抑制物质的降解规律.农业环境保护,2001,20(4):206-209. Piao Z, Cui Z J, Su B L. Agro-Environmental Protection, 2001, 20(4): 206-209.
[12] 崔宗均,李美丹,朴哲.一组高效稳定纤维素分解菌复合系MC1的筛选及功能.环境科学,2002,23(3):36-39. Cui Z J, Li M D, Piao Z. Chinese Journal of Enviromental Science, 2002, 23(3): 36-39.
[13] Godden B, Ball A S, Helvenstein P, et al. Towards elucidation of the lignin degradation path way in actinomycetes. Journal of General Microbiology,1992, 138:2441-2448.
[14] 席北斗,刘鸿亮,白庆中,等.堆肥中纤维素和木质素的生物降解研究现状. 环境污染治理技术与设备,2002,3(3):19-23. Xi B D,Liu H L,Bai Q Z, et al. Technigues and Equipment For Environmental Pollution Control, 2002, 3(3):19-23.

[1] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[2] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[3] Pei-yi LI,Yu-cong ZHOU,Ya-qian LI,Jie CHEN. Study on Functional Properties of Carbon Catabolite Repressor CRE1 in Trichoderma atroviride[J]. China Biotechnology, 2018, 38(6): 17-25.
[4] LI Xiao-xin, GAO Ming-hao, ZHANG Miao-miao, LIU Xiao-chen, QIAO Chang-sheng. Effect of Dissolved Oxygen on γ-PGA Fermentation[J]. China Biotechnology, 2015, 35(3): 42-48.
[5] XU Xue-li, ZHANG Wei, LIU Yan, XIE Li-ping, HU You-jia. Study on Mutations of Cephalosporin C Acylase[J]. China Biotechnology, 2015, 35(2): 59-65.
[6] FENG Duo, ZHANG Kuo, LI Qian-qian, HAN Cui-xiao, GAO Wei. Expression, Purification, Activity Detection and Crystal Growth Studies on Sf2523 Protein from Shigella flexneri 2a Strain 301[J]. China Biotechnology, 2012, 32(08): 24-29.
[7] SHI Bi-hong, CHEN Ming, ZHAI Miao-xian, YAN Lei, CHEN Wen-jing. Directed Evolution of Alkaline Lipase from Penicillium Expansum FS1884 by Error-prone PCR[J]. China Biotechnology, 2011, 31(11): 64-68.
[8] 尹娟 YIN Juan. Research Progress on Determination of Cellulase Activity and Gene Expression by Biosensor[J]. China Biotechnology, 2009, 29(01): 86-92.
[9] . Studies on the Effects of Ultrasound on Pepsin,Trypsin and Catalase[J]. China Biotechnology, 2006, 26(05): 81-84.