Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (10): 66-73    DOI:
    
Current Progress on the HIV-1 TAT Protein Transduction Peptide
WU Yong-hong, ZHANG Cheng-gang
Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
Download: HTML   PDF(713KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The TAT protein transduction peptide rich in basic amino acids, encoded by human immunodeficiency virus type 1, was a member of the protein transduction domain family. It has been widely known that the full-length TAT peptide and the core domain (YGRKKRRQRRR) play important roles in transduction of heterologous biological macromolecules such as proteins, peptides and nucleotides to across all kind of biomembranes in vivo, although the mechanism is still unknown. Recently, the TAT core domain has another function for promoting heterologous protein expression in E. coli was demonstrated. Accordingly, the current progress of TAT peptide from the structural features, factors affecting protein transduction and the underlying mechanism were reviewed in order to promote the application of the TAT peptide.



Key wordsTrans-activator transduction      Protein transduction peptide      Basic amino acid      Protein transduction      Expression of heterologous proteins     
Received: 08 June 2010      Published: 25 October 2010
ZTFLH:  Q819  
Corresponding Authors: ZHANG Cheng-gang     E-mail: zhangcg@bmi.ac.cn
Cite this article:

WU Yong-hong, ZHANG Cheng-gang. Current Progress on the HIV-1 TAT Protein Transduction Peptide. China Biotechnology, 2010, 30(10): 66-73.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I10/66


[1] Mochizuki T, Kim J, Sasaki K. Microinjection of neuropeptide S into the rat ventral tegmental area induces hyperactivity and increases extracellular levels of dopamine metabolites in the nucleus accumbens shell. Peptides, 2010, 31: 926-931.

[2] Stein P. Microinjection of plasmids into meiotically incompetent mouse oocytes. CSH Protoc, 2009, 1: pdb. prot5135.

[3] Stroh T, Erben U, Kuhl A A, et al. Combined pulse electroporation - a novel strategy for highly efficient transfection of human and mouse cells. PLoS One, 2010, 5: e9488.

[4] Charoo N A, Rahman Z, Repka M A, et al. Electroporation: An avenue for transdermal drug delivery. Curr Drug Deliv, 2010, 7: 125-136.

[5] Tang J, Wei H, Liu H, et al. Pharmacokinetics and biodistribution of itraconazole in rats and mice following intravenous administration in a novel liposome formulation. Drug Deliv, 2010, 17: 223-230.

[6] Schwendener R A, Ludewig B, Cerny A, et al. Liposome-based vaccines. Methods Mol Biol, 2010, 605: 163-175.

[7] Lei L, Han D, Efficient transduction of spiral ganglion cells using adenovirus type 5 vector in the rat. Acta Otolaryngol, 2010, DOI: 10.3109/00016480903510742.

[8] Xu Y, Gong B, Yang Y, et al. Adenovirus-mediated overexpression of glutathione-s-transferase mitigates transplant arteriosclerosis in rabbit carotid allografts. Transplantation, 2010, 89: 409-416.

[9] Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem, 1997, 272: 16010-16017.

[10] Brooks N A, Pouniotis D S, Tang C K. Cell-penetrating peptides: application in vaccine delivery. Biochim Biophys Acta, 2010, 1805: 25-34.

[11] 彭涛, 刘英辉, 杨春蕾, 等. 体内蛋白转导的研究进展. 中国药科大学学报, 2003, 34: 477-480. Peng T, Liu Y H, Yang C L, et al. Journal of China Pharmaceutical University, 2003, 34: 477-480.

[12] 李锋, 陈岚, 肖新莉, 等. 蛋白转导肽-外源物质进入细胞的新工具. 生命的科学, 2004, 34: 192-194. Li F, Chen L, Xiao X L, et al. Chinese Bulletin of Life Sciences, 2004, 34: 192-194.

[13] Green M, Loewenstein P M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988, 55: 1179-1188.

[14] Frankel A D, Pabo C O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55: 1189-1193.

[15] Derossi D, Joliot A H, Chassaing G. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem, 1994, 269: 10444-10450.

[16] Elliott S L, Pye S J, Schmidt C. Dominant cytotoxic T lymphocyte response to the immediate-early trans-activator protein, BZLF1, in persistent type A or B Epstein-Barr virus infection. J Infect Dis, 1997, 176: 1068-1072.

[17] Han K, Jeon M J, Kim S H. Efficient intracellular delivery of an exogenous protein GFP with genetically fused basic oligopeptides. Mol Cells, 2001, 12: 267-271.

[18] Jin L H, Bahn J H, Eum W S, et al. Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells. Free Radic Biol Med, 2001, 31: 1509-1519.

[19] Park J, Ryu J, Jin L H, et al. 9-polylysine protein transduction domain: enhanced penetration efficiency of superoxide dismutase into mammalian cells and skin. Mol Cells, 2002, 13: 202-208.

[20] Jin L, Lai B, Geng Y, et al. The influence of human single chain inteleukin-12 gene transduction on the biological behavior of hepatoma 7721 cells. Chin Med Sci J, 2001, 16: 147-152.

[21] Schwarze S R, Dowdy S F. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci, 2000, 21: 45-48.

[22] 严世荣, 严洁, 龚坚, 等. TAT-β-半乳糖苷酶对小鼠生物膜穿透性的研究. 基础医学与临床, 2002, 22: 343-345. Yan S R, Yan J, Gong J, et al. Basic & Clinical Medicine, 2002, 22: 343-345.

[23] 刘强, 梁英民, 郑瑾, 等. PTD 介导蛋白通过血脑屏障及其在脑组织中的分布. 中国现代医学杂志, 2003, 13: 33-35. Liu Q, Liang Y M, Zheng J, et al. China Journal of Modern Medicine, 2003, 13: 33-35.

[24] 陈菁, 刘树滔, 饶平凡, 等. PTD-Tat之C端融合在活体体内的跨膜递送作用. 福州大学学报, 2006, 34: 301-304. Chen J, Liu S T, Rao P F, et al. Journal of Fuzhou University, 2006, 34: 301-304.

[25] Wu Y H, Ren C H, Gao Y et al. A novel method for promoting heterologous protein expression in Escherichia coli by fusion with the HIV-1 TAT core domain. Amino Acids, 2010 Mar 6. doi:10.1007/s00726-010-0534-2.

[26] Arya S K, Guo C, Josephs S F, et al. Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science. 1985, 229: 69-73.

[27] Dayton A I, Sodroski J G, Rosen C A, et al. The trans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell, 1986, 44: 941-947.

[28] Fisher A G, Feinberg M B, Josephs S F, et al. The trans-activator gene of HTLV-III is essential for virus replication. Nature, 1986, 320: 367-371.

[29] Fawell S, Seery J, Daikh Y, et al. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A, 1994, 91:664-668.

[30] 杨永臣, 袁崇刚, 李荣秀. Tat蛋白及其内化作用. 生命的化学, 2001, 21: 265-268. Yang Y C, Yuan C G, Li R X. Chinese Bulletin of Life Sciences, 2001, 21: 265-268.

[31] 艾菁, 王丽梅, 夏威, 等. Tat蛋白结构与功能的研究进展. 细胞与分子免疫学杂志, 2005, 21(Suppl): 133-135. Ai J, Wang L M, Xia W, et al. Chinese Journal of Cellular and Molecular Immunology, 2005, 21(Suppl): 133-135.

[32] 尹锐, 郝飞. 穿膜肤HIV Tat蛋白的研究进展. 免疫学杂志, 2005, 21: 77-81. Yin R, Hao F. Immunological Journal, 2005, 21: 77-81.

[33] Loret E P, Vives E, Ho P S, et al. Activating region of HIV-1 Tat protein: vacuum UV circular dichroism and energy minimization. Biochemistry, 1991, 30: 6013-6023.

[34] Tahirov T H, Babayeva N D, Varzavand K, et al. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature. 2010,465(7299):747-751.

[35] Ryu J, Han K, Park J, et al. Enhanced uptake of a heterologous protein with an HIV-1 Tat protein transduction domains (PTD) at both termini. Mol Cells, 2003, 16: 385-391.

[36] Eum W S, Jang S H, Kim D W, et al. Enhanced transduction of Cu,Zn-superoxide dismutase with HIV-1 Tat protein transduction domains at both termini. Mol Cells, 2005, 19: 191-197.

[37] Gratton J P, Yu J, Griffith J W, et al. Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nat Med, 2003, 9: 357-362.

[38] Suzuki T, Futaki S, Niwa M, et al. Possible existence of common internalization mechanisms among arginine-rich peptides. J Biol Chem, 2002, 277: 2437-2443.

[39] Eguchi A, Akuta T, Okuyama H, et al. Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J Biol Chem, 2001, 276: 26204-26210.

[40] Tseng Y L, Liu J J, Hong R L. Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: a kinetic and efficacy study. Mol Pharmacol, 2002, 62: 864-872.

[41] Koppelhus U, Awasthi S K, Zachar V, et al. Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense Nucleic Acid Drug Dev, 2002, 12: 51-63.

[42] Mai J C, Shen H, Watkins S C, et al. Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J Biol Chem, 2002, 277: 30208-30218.

[43] Chen L L, Frankel A D, Harder J L, et al. Increased cellular uptake of the human immunodeficiency virus-1 Tat protein after modification with biotin. Anal Biochem, 1995, 227: 168-175.

[44] Wender P A, Mitchell D J, Pattabiraman K, et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A, 2000, 97: 13003-13008.

[45] Koppelhus U, Shiraishi T, Zachar V, et al. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain. Bioconjug Chem, 2008, 19: 1526-1534.

[46] Mitchell D J, Kim D T, Steinman L, et al. Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res, 2000, 56: 318-325.

[47] Wright L R, Rothbard J B, Wender P A. Guanidinium rich peptide transporters and drug delivery. Curr Protein Pept Sci, 2003, 4: 105-124.

[48] Torchilin V P, Rammohan R, Weissig V, et al. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A, 2001, 98: 8786-8791.

[49] Lewin M, Carlesso N, Tung C H, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol, 2000, 18: 410-414.

[50] Schwarze S R, Ho A, Vocero-Akbani A, et al. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science, 1999, 285: 1569-1572.

[51] Nori A, Jensen K D, Tijerina M, et al. Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. Bioconjug Chem, 2003, 14: 44-50.

[52] Torchilin V P, Levchenko T S. TAT-liposomes: a novel intracellular drug carrier. Curr Protein Pept Sci, 2003, 4: 133-140.

[53] Nagahara H, Vocero-Akbani A M, Snyder E L, et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med, 1998, 4: 1449-1452.

[54] Derossi D, Calvet S, Trembleau A, et al. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem, 1996, 271: 18188-18193.

[55] Brooks H, Lebleu B, Vives E. Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev, 2005, 57:559-577.

[56] Koppelhus U, Nielsen P E. Cellular delivery of peptide nucleic acid (PNA). Adv Drug Deliv Rev, 2003, 55: 267-280.

[57] Wadia J S, Stan R V, Dowdy S F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med, 2004, 10: 310-315.

[58] Wadia J S, Dowdy S F. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv Drug Deliv Rev, 2005, 57: 579-596.

[1] SU Hang, YU Rong-jie, LIU Xiao-fei, WANG Jing-jing, LI Xiao-xia, CHEN Jian-su. Preparation of Recombinant PTD-KLF4 with Penetrating Peptide and Activity Assay[J]. China Biotechnology, 2011, 31(9): 48-54.
[2] WU Yong-hong, SHI Jin-ping, HE Guo-wei, REN Chang-hong, GAO Yan, ZHANG Cheng-gang. TAT Protein Transduction Peptide Mediated Heterologous Proteins Transduction in C.elegans[J]. China Biotechnology, 2011, 31(03): 39-45.
[3] . Current Progress on the HIV-1 TAT Protein Transduction Peptide[J]. China Biotechnology, 2010, 30(10): 0-0.