Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (05): 128-132    DOI:
    
Advances in Applications of Elastin-like Polypeptides in Biomedical Materials
HUANG Kai-zong,WANG Wen-yan,ZHANG Guang-ya
Department of Bioengineering and Biotechnology,Huaqiao University,Xiamen  362021,China
Download: HTML   PDF(422KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Elastin-like polypeptides(ELPs) were a family of artificial, genetically encodable polypeptidesthey are primarily composed of the repeating pentapeptide sequence GVGXP. Due to their reversible phase transition characteristics, ultra-high production, excellent biocompatibility and biodegradation, ELPs had an intensive potential in new biomedical materials. Describes principle of ELPs’ phase transition, and its applications in biomedical materials,especially gives emphasis to introduce the applications of tissue engineering, targeting tumor and constructing of drug carrier particle.



Key wordsElastin-like polypeptides      Transition temperature      Tissue engineering      Drug carrier      Biomedical materials     
Received: 26 November 2009      Published: 25 May 2010
Cite this article:

HUANG Kai-Zong, WANG Wen-Xing, ZHANG Guang-E. Advances in Applications of Elastin-like Polypeptides in Biomedical Materials. China Biotechnology, 2010, 30(05): 128-132.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I05/128

[1] Urry D W,Luan C H,Parker T M ,Gowda D C,et al.Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity.Journal of the American Chemical Society,1991,113(11):43464348. 
[2] Urry D W.Physical chemistry of biological free energy transduction as demonstrated by elastic proteinbased polymers.Journal of Physical Chemistry B,1997,101(51):1100711028. 
[3] Long M M,Urry D W,Cox B A,et al.Coacervation of repeat sequences of elastin.Biophys,1975,15:A71(Abstr). 
[4] Urry D W.Molecular mechanisms of elastin coacervation and coacervate calcification.Journal of the American Chemical Society,1976,61:205212. 
[5] Urry D W.Molekulare Maschinen: Wie Bewegung und andere Funktionen lebender Organismen aus reversiblen chemischen ?nderungen entstehen.Angewandte Chemie,2006,105:859883. 
[6] Urry D W. Biomolekulare maschinen aus elastischen polymeren.Spektrum der Wissenschaft,1995,4:4447. 
[7] Dybal J,Schmidt P,Kurková D,et al.Temperature induced conformational transitions of elastinlike polypentapeptides studied by Raman and NMR spectroscopy.Spectroscopy,2002,16:251255. 
[8] Gross P C,Possartb W,Zeppezauer M.An alternative structure model for the polypentapeptide in elastin.Journal of Biosciences,2003,58(1112):873878 . 
[9] Serrano V,Liu W,Franzen S.An infrared spectroscopic study of the conformational transition of elastinlike polypeptides.Biophysical Journal,2007,93:24292435. 
[10] Urry D W,Parker T M.Mechanics of elastin: molecular mechanism of biological elasticity and its relationship to contraction.Journal of Muscle Research and Cell Motility,2002,23:543559. 
[11] Urry D W,Hugel T,Seitz M,et al.Elastin: a representative ideal protein elastomer.The Royal Society,2002,357:169184. 
[12] RodríguezCabello J C,Reguera J,Alonso M,et al.Endothermic and exothermic components of an inverse temperature transition for hydrophobic association by TMDSC.Chemical Physics Letters,2004,388:127131. 
[13] Chow D,Nunalee M L,Lim D W.Peptidebased biopolymers in biomedicine and biotechnology.Materials Science and Engineering R,2008,62:125155. 
[14] Meyer D E,Chilkoti A.Genetically encoded synthesis of proteinbased polymers with precisely specified molecular weight and sequence by recursive directional ligation:examples from the elastinlike polypeptide system.Biomacromolecules,2002,3:357367. 
[15] Chow D C,Dreher M R,CarlsonK T,et al.Ultrahigh expression of a thermally responsive recombinant fusion protein in E.coli.Biotechnol Prog,2006,22(3):638646. 
[16] Langer R,Vacanti J P.Tissue engineering.Science,1993,260:920927. 
[17] Urry D W,Xu T C,Parker T M.Elastic proteinbased polymers in soft tissue augmentation and generation.Journal of Biomaterials SciencePolymer Edition,1998,9:10151048. 
[18] Betre H,Setton L A,Meyer D E,et al.Characterization of a genetically engineered elastinlike polypeptide for cartilaginous tissue repair.Biomacromolecules,2002,3 (5):910916. 
[19] Betre H; Ong S R; Guilak F,et al.Chondrocytic differentiation of human adiposederived adult stem cells in elastinlike polypeptide.Biomaterials,2006,27:9199. 
[20] Lim D W,Nettles D L,Setton L A,et al.In situ crosslinking of elastinlike polypeptide block copolymers for tissue repair.Biomacromolecules,2008,9:222230. 
[21] Martín L,Alonso M,Girotti A,et al.Synthesis and characterization of macroporous thermosensitive hydrogels from recombinant elastinlike polymers,Biomacromolecules,2009,10:30153022. 
[22] MartínezOsorio H,JuárezCampo M,Diebold Y,et al.Genetically engineered elastinlike polymer as a substratum to culture cells from the ocular surface.Current Eye Research,2009,34(1):4856. 
[23] Annabi N,Mithieux S M,Boughton E A,et al.Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro.Biomaterials,2009,3:18. 
[24] Kyle S,Aggeli A,Ingham E,et al.Production of selfassembling biomaterials for tissue engineering.Trends in Biotechnology,2009,27(7):423433. 
[25] Hart D S,Gehrke S H.Thermally associating polypeptides designed for drug delivery produced by genetically engineered cells.Pharmaceutical Sciences,2007,96:484516. 
[26] Meyer D E,Kong G A,Dewhirst M W,et al.Targeting a genetically engineered elastinlike polypeptide to solid tumors by local hyperthermia.Cancer Research,2001,61(4):15481554. 
[27] Liu W,Dreher M R,Furgeson D Y,et al.Tumor accumulation degradation and pharmacokinetics of elastinlike polypeptides in nude mice.Journal of Controlled Release,2006,116 (2):170178. 
[28] Dreher M R,Liu W,Michelich C R,et al.Thermal cycling enhances the accumulation of a temperaturesensitive biopolymer in solid tumors.Cancer Research.2007,67(9):44184424. 
[29] Ryu B Y,Sohn J S,Hess M,et al.Synthesis and anticancer efficacy of rapid hydrolysed watersoluble paclitaxel prodrugs.Biomaterials Science,2008,19 (3):311324. 
[30] Yeung T K,Hopewell J W,Simmonds R H,et al.Reduced cardiotoxicity of doxorubicin given in the form of N(2hydroxypropyl)methacrylamide conjugates and experimental study in the rat.Cancer Chemotherapy and Pharmacology,1991,29(2):105111. 
[31] Duncan R,Coatsworth J K,Burtles S.Preclinical toxicology of a novel polymeric antitumour agent:HPMA copolymerdoxorubicin (PK1) .Human and Experimental Toxicology,1998,17 (2):93104. 
[32] Betre H,Liu W,Zalutsky M R,et al.A thermally responsive biopolymer for intraarticular drug delivery.Journal of Controlled Release,2006,115 (2):175182. 
[33] Shamji M F,Whitlatch L,Friedman A H,et al.An injectable and in situgelling biopolymer for sustained drug release following perineural administration.Spine,2008,33(7):748754. 
[34] Fujita Y,Mie M,Kobatake E.Construction of nanoscale protein particle using temperaturesensitive elastinlike peptide and polyaspartic acid chain.Biomaterials,2009,30:34503457. 
[35] Osborne J L,Farmer R,Woodhouse K A.Selfassembled elastinlike polypeptide particles.Acta Biomaterialia.2008,4:4957. 
[36] Wu Y Q,MacKay J A,McDaniel J R,et al.Fabrication of elastinLike polypeptide nanoparticles for drug delivery by electrospraying.Biomacromolecules,2009,10:19–24. 
[37] MacKay J A,Chen M,McDaniel J R,et al.Selfassembling chimeric polypeptide–doxorubicin conjugate nanoparticles that abolish tumours after a single injection.Nature Materials.2009,8:993999.

[1] SUN Li-ping,XU Wan,LI Meng-wei,ZENG Ru,WENG Jian. Advances of the Physiochemical Properties of Sporopollenin and Its Biomedical Applications[J]. China Biotechnology, 2021, 41(9): 92-100.
[2] LI Jia-xin,ZHANG Zheng,LIU He,YANG Qing,LV Cheng-zhi,YANG Jun. Preparation and Drug Release Properties of Keratin-loaded Nanoparticles[J]. China Biotechnology, 2021, 41(8): 8-16.
[3] ZHU Shuai,JIN Ming-jie,YANG Shu-lin. A Review on Applications of 3D Bioprinting in Cartilage Tissue Regeneration Engineering[J]. China Biotechnology, 2021, 41(5): 65-71.
[4] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[5] YU Xing-ge,LIN Kai-li. The Application of Biomaterials Based on Natural Hydrogels in Bone Tissue Engineering[J]. China Biotechnology, 2020, 40(5): 69-77.
[6] WANG Yuan-dou,SU Feng,LI Su-ming. Research Progress of Photocrosslinked Hydrogel in Tissue Engineering[J]. China Biotechnology, 2020, 40(4): 91-96.
[7] YAN Ge,QIAO Wei-hua,CAO Hong,SHI Jia-wei,DONG Nian-guo. Application of Surface Modification of Polydopamine in Tissue Engineering[J]. China Biotechnology, 2020, 40(12): 75-81.
[8] Hui-rong WU,Zhao-hui WEN. Application of Chitosan in Nerve Tissue Engineering[J]. China Biotechnology, 2019, 39(6): 73-77.
[9] Xiao-qian PAN,Xiang-yuan XIONG,Yan-chun GONG,Zi-ling LI,Yu-ping LI. Advances in Research of Oral Anticancer Drug Nanocarrier[J]. China Biotechnology, 2018, 38(9): 65-73.
[10] Xi KANG,Ai-peng DENG,Shu-lin YANG. Research Progress of Chitosan Based Thermosensitive Hydrogels[J]. China Biotechnology, 2018, 38(5): 79-84.
[11] XI Lai-shun,YUN Peng,WANG Yuan-dou,ZHANG Guan-hong,XING Quan-sheng,CHEN Yang-sheng,SU Feng. Application of Shape Memory Polymer in Tissue Engineering[J]. China Biotechnology, 2018, 38(12): 76-81.
[12] SUN Huai-yuan,SONG Xiao-kang,LIAO Yue-hua,LI Xiao-ou. The Application of Piezoelectric Micro-jetting Technology in the Field of Cell Bioprinting[J]. China Biotechnology, 2018, 38(12): 82-90.
[13] LI Da-wei, HE Jin, HE Feng-li, LIU Ya-li, DENG Xu-dong, YE Ya-jing, YIN Da-chuan. Advances in Application of Silk Fibroin/Chitosan Composite in Tissue Engineering[J]. China Biotechnology, 2017, 37(10): 111-117.
[14] LUO Si-shi, TANG Shun-qing. Research Progress of Agarose in Tissue Engineering[J]. China Biotechnology, 2015, 35(6): 68-74.
[15] WANG Dian-liang. Three-dimensional Construction of Tissue Organ and Concept of in situ Tissue Engineering[J]. China Biotechnology, 2014, 34(8): 112-116.