Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (05): 11-17    DOI:
    
Expression, Purification and Bioassay of Tat-aFGF Fusion Protein in Escherichia coli
LIN Jian-cong 1,ZHANG Min-jing1,3 ,SU Zhi-jian1,2,CHEN Hong-xia1,QIU Zhuang-wei1,Lou Guo-feng1, Xiang Qi1,2,3,HUANG Yadong1,2,3
1.Life Science and Techonology College of Jinan University,Biopharmaceutical Research & Development Center, Guangzhou 510632,China
2.Guang Dong Provincial Key Laboratory of Bioengineering Medicine,Guangzhou 510632,China
3.National Engineering Research Center of Genetic Medicine,Guangzhou 510632,China
Download: HTML   PDF(1351KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Acidic fibroblast growth factor (aFGF) is a potent neurotrophic factor. It can stimulate the reparation and regeneration of central and peripheral nerves after various injuries. Recently, an approach to deliver therapeutic peptides to the brain is the application of fusion proteins linked to so-called trans-activator transcription (TAT) protein, which can carry the therapeutic protein to permeate blood-brain barrier(BBB) and cell membranes. In this study, aFGF was linked to TAT protein by genetic engineering, and the soluble TAT-aFGF has been expressed successfully in E.Coli. DNA coded fusion proteins Tat-aFGF14-154 and Tat-aFGF27-154 were constructed and cloned into vector pET-3c and the fusion proteins were expressed in E.coli BL21 (DE3). The fusion proteins Tat-aFGF14-154 and Tat-aFGF27-154 were puritified using the combination of CM-Sepharose FF, Heparin affinity chromatography and Sephadex G-25 and the purity were higher than 95%. The fusion proteins were confirmed as Tat-aFGF14-154 and Tat-aFGF27-154 by Western bolt and MALDI-TOF. The mitogenic activity assayed by MTT on Balb/c 3T3 cell showed that Tat-aFGF14-154 and aFGF14-154 had mitogenic activity to Balb/c 3T3 and the best concentration were 1280 ng/ml and 160 ng/ml,respectively.On the other hand, Tat-aFGF27-154 and aFGF27-154 had little mitogenic activity. Tat-aFGF14-154 and Tat-aFGF27-154 could transduce the membrane of PC12, hippocampal neurons, Balb/c 3T3 and HaCaT cells and were mainly located mainly in the cytoplasm detected by immunofluorescence. Four recombinant proteins could efficiently protect hippocampal neurons from toxicity induced by Aβ25-35.



Key wordsTat      human acidic fibroblast growth factor      fusion protein      neurons     
Received: 22 February 2010      Published: 25 May 2010
Corresponding Authors: Ya Dong Huang     E-mail: tydhuang@jnu.edu.cn
Cite this article:

LIN Jian-Cong, ZHANG Min-Jing, SU Zhi-Jian, CHEN Gong-Xia, QIU Zhuang-Wei, LOU Guo-Feng, XIANG Qi, HUANG E-Dong. Expression, Purification and Bioassay of Tat-aFGF Fusion Protein in Escherichia coli. China Biotechnology, 2010, 30(05): 11-17.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I05/11

[1] Lozano R M , PinedaLucena A, et al. 1H NMR structural characterization of a nonmitogenic, vasodilatory, ischemiaprotector and neuromodulatory acidic fibroblast growth factor. Biochemistry, 2000, 39: 49824993. 
[2] Komi A, Suzuki M, Imamura T. Permeable FGF1 nuclear localization signal peptide stimulates DNA synthesis in various cell types but is celldensity sensitive and unable to support cell proliferation. Exp Cell Res, 1998, 243(2): 408414. 
[3] 余瑛,蔡绍皙,夏玉先. 酸性成纤维细胞生长因子研究进展. 中国药理学通报,2002,18(2):125128. Yu Y, Cai S H, Xia Y X, et al. Chinese Pharmacological Bulletin, 2002, 18(2):125128. 
[4] Engele J, Bohn M C. Effects of acidic and basic fibroblast growth factors on glial precursor cell proliferation: age dependency and brain region specificity. Dev Biol, 1992, 152(2): 363372. 
[5] Bannerman P G, Oliver T M, Xu Z, et al. Effects of FGF1 and FGF2 on GD3 immunoreactive spinal neuroepithelial cells. J Neurosci Res, 1996, 45(5): 549557. 
[6] Huang M C, Lo M J, Lin Y L, et al. Functional recovery after the repair of transected cervical roots in the chronic stage of injury. J Neurotrauma, 2009, 26(10): 17951804. 
[7] Huang M C, Chang P T, Tsai M J, et al. Sensory and motor recovery after repairing transected cervical roots. Surg Neurol, 2007, 68 (1): S1724. 
[8] Ricardo B, Maccionil, Cristobal B, et al. Biological markers of Alzheimer'S disease and mild cognitive impairment. Current Alzheimer Research, 2004, 1: 307314. 
[9] Matrone C, Ciotti M T, Mercanti D, et al. NGF and BDNF signaling control amyloidogenic route and Abeta production in hippocampal neurons. Proc Natl Acad Sci U S A, 2008, 105(35): 1313913144. 
[10] Huang T D,Rao Y L,Feng C L, et al. Highlevel expression and purification of TathaFGF19154. Appl Microbiol Biotechnol, 2008, 77:10151022. 
[11] Wang Y, Lin H H, Lin S Q, et al. Cellpenetrating peptide TATmediated delivery of acidic FGF to retina and protection against ischemiareperfusion injury in rats. J. Cell. Mol. Med, 2009(in press). 
[12] 汪小凤,郑青,蔡绍晖,等. 非促有丝分裂型人酸性成纤维细胞生长因子的受体结合特性及对MAPK信号通路的影响. 中国药科大学学报,2005,36(2):179182 . Wang X F, Zheng Q, Cai S H, et al. Joumal of China Pharmaceutical University. 2005,36(2): 179182. 
[13] Bugatti A, Urbinati C, Ravelli C, et al. Heparinmimicking sulfonic acid polymers as multitarget inhibitors of human immunodeficiency virus type 1 Tat and gp120 proteins. Antimicrob Agents Chemother, 2007, 51(7): 23372345. 
[14] Duchardt F, FotinMleczek M, Schwarz H, et al. A comprehensive model for the cellular uptake of cationic cellpenetrating peptides. Traffic, 2007,8(7):848866. 
[15] Simon M J,Gao S,Kang W H, et al. TATmediated intracellar protein delivery to primary brain cells is dependent on glycosaminoglycan expression. Biotechnol Bioeng, 2009, 104(1): 1019. 
[16] Nakase I, Takeuchi T, Kawabata N, et al. Cellular uptake of argininerich peptides:roles for macropinocytosis and actin rearrangement. Molecular therapy, 2004, 10(6):10111022. 
[17] Wadia J S, Stan R V, Dowdy S F. Transducible TATHA fusogenic peptide enhances escape of TATfusion proteins after lipid raftmacropinocytosis. Nature Medicine, 2004, 10(3):310315. 
[18] Jacob M Gump, Steven F D. TAT transduction: the molecular mechanism and therapeutic prospects. Trends in Molecular Medicine, 2007, 13(10): 443448.

[1] HE Li-heng,ZHANG Yi,ZHANG Jie,REN Yu-chao,XIE Hong-e,TANG Rui-min,JIA Xiao-yun,WU Zong-xin. Construction of Gene Co-expression Network and Identification of Hub Genes Related to Anthocyanin Biosynthesis Based on RNA-seq and WGCNA in Sweetpotato[J]. China Biotechnology, 2021, 41(9): 27-36.
[2] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[3] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[4] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[5] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[6] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[7] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[8] WU Han-rong,WANG Ying,YANG Li,GE Yao,FAN Ling. Current Situation and Development Suggestions of China’s Biotechnology Base Platform[J]. China Biotechnology, 2021, 41(11): 119-123.
[9] MENG Xiao-lin,PANG Xi-ming,WANG Jie. Agrobacterium-mediated Transformation and the Functions of Pks in Marine-derived Penicillium oxalicum[J]. China Biotechnology, 2020, 40(9): 11-17.
[10] GUO Guang-chao,ZHOU Yu-yong,CAO San-jie,WU Yao-min,WU Rui,ZHAO Qin,WEN Xin-tian,HUANG Xiao-bo,WEN Yi-ping. The Study on the Effect of NS2A-C60A Site Mutation of Japanese Encephalitis Virus on Its Biological Characteristics[J]. China Biotechnology, 2020, 40(9): 1-10.
[11] YIN Zheng-qing,BAI Jing-yu,LIN Xiao-feng. Competitiveness Analysis and Enlightenment of Biomedical Industry in USA[J]. China Biotechnology, 2020, 40(9): 87-94.
[12] PENG Xiang-lei,WANG Ye,WANG Li-nan,SU Yan-bin,FU Yuan-hui,ZHENG Yan-peng,HE Jin-sheng. Single-Primer PCR for Site-Directed Mutagenesis[J]. China Biotechnology, 2020, 40(8): 19-23.
[13] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[14] WANG Ze-jian,LI Bo,WANG Ping,ZHANG Qin,HANG Hai-feng,LIANG Jian-guang,ZHUANG Ying-ping. Effects of Glucose and Maltose Substrates on the Intracellular Metabolic Flux Distribution of Curdlan Polysaccharides Biosynthesis by Alcaligenes faecalis[J]. China Biotechnology, 2020, 40(5): 30-39.
[15] LIN Lu,HU Li-jun,HUANG Yi-yun,CHEN Lu,HUANG Mao,PENG Qi,HU Qin,ZHOU Lan. S100A6 Promotes Angiogenesis Through Recruiting and Activating Macrophages[J]. China Biotechnology, 2020, 40(5): 7-14.