Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (04): 39-43    DOI:
    
Expression, Purification and Identification of Human Recombinant ASCT2 C-Terminal Extracellular Domain in Escherichia coli
OUYANG Dong-yun1,2,XU Li-hui3,GAO Qi1,2,GUO He1,2,CHEN Qing1,2,HE Xian-hui1,2
1.Institute of Tissue Transplantation and ImmunologyJinan University,Guangzhou 510632,China
2.Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guanzhou 510632,China
3.Institute of Bioengineering, Jinan University, Guangzhou 510632, China
Download: HTML   PDF(599KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The C-terminal (comprising 105 amino acids) of neutral amino acid transporter ASCT2 (named as TAIL in this study) is the largest extracellular domain of the protein. ASCT2 is reported to be the main receptor for the envelope of human endogenous retrovirus W family (syncytin) on cell membrane. In this study, ASCT2 cDNA was derived from human breast cancer cell line MCF-7 by RT-PCR method. DNA fragment encoding the TAIL peptide was inserted into pET-41b vector and the recombinant plasmid was expressed in Escherichia coli (E. coli). TAIL peptide, which was recombinated with a glutathione S-transferase (GST) at the N-terminal and a His6 tag at the C-terminal, was expressed in E. coli cells. SDS-PAGE and Western blotting analysis demonstrated that the recombinant protein existed both in the supernatant and the pellet part of E. coli lysates. The supernatant was further purified by affinity chromatography. Highly pure recombinant protein could bind with MCF-7 cells which were reported to express syncytin molecules on their membranes. These results suggest that the recombinant protein has the potential to bind with syncytin molecules.



Key wordsSyncytin      Neutral amino acid transporter type 2      Extracellular domain      Prokaryotic expression     
Received: 06 November 2009      Published: 29 April 2010
Corresponding Authors: Xian-Hui He     E-mail: thexh@jnu.edu.cn
Cite this article:

OU Yang-Dong-Yun, XU Li-Hui, GAO Qi, GUO He, CHEN Qing, HE Xian-Hui. Expression, Purification and Identification of Human Recombinant ASCT2 C-Terminal Extracellular Domain in Escherichia coli. China Biotechnology, 2010, 30(04): 39-43.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I04/39

[1] Blond J L, Lavillette D, Cheynet V, et al. An envelope glycoprotein of the human endogenous retrovirus HERVW is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol, 2000, 74: 33213329. 
[2] Mi S, Lee X, Li X, et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature, 2000, 403: 785789. 
[3] Larsson L I, Holck S, Christensen I J. Prognostic role of syncytin expression in breast cancer. Hum Pathol, 2007, 38(5): 726731. 
[4] Larsen J M, Christensen I J, Nielsen H J, et al. Syncytin immunoreactivity in colorectal cancer: potential prognostic impact. Cancer Lett, 2009, 280(1): 4449. 
[5] He X H,Xul H, Liu Y. Enhancement of binding activity of soluble human CD40 to CD40 ligand through incorporation of an isoleucine zipper motif. Acta Pharmacol Sin,2006,27(3):333338. 
[6] Bjerregaard B, Holck S, Christensen I J, et al. Syncytin is involved in breast cancerendothelial cell fusions. Cell Mol Life Sci, 2006, 63(16): 19061911. 
[7] Lwer R, L?wer J, Kurth R. The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc Natl Acad Sci U S A, 1996, 93(11): 51775184. 
[8] Kudo Y, Boyd C A. Changes in expression and function of syncytin and its receptor, amino acid transport system B(0) (ASCT2), in human placental choriocarcinoma BeWo cells during syncytialization. Placenta, 2002, 23(7): 536541. 
[9] Knerr I, Schnare M, Hermann K, et al. Fusiogenic endogenousretroviral syncytin1 exerts antiapoptotic functions in staurosporinechallenged CHO cells. Apoptosis, 2007, 12(1): 3743. 
[10] Lee X, Keith J C, Stumm N, et al. Downregulation of placental syncytin expression and abnormal protein localization in preeclampsia. Placenta, 2001, 22(10): 808812. 
[11] Liu H, Mao N, Hou C, et al. Protective effect of human CD402Ig fusion protein in a murine model of acute graftversushost disease. Chin Med J, 2001, 114 (7): 685  689. 
[12] Jin Y Z, Xie S S. Bicistronic adenovirusmediated gene transfer of CTLA4 Ig gene and CD40 Ig gene result in indefinite survival of islet xenograft. Transplant Proc, 2003, 35(8): 3165  3166.

[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[3] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[4] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[5] LI Tong-tong,SONG Cai-ling,YANG Kai-yue,WANG Wen-jing,CHEN Hui-yu,LIU Ming. Preparation and Neutralization Activity of Anti-Canine Parvovirus VP2 Protein Single-chain Antibody[J]. China Biotechnology, 2020, 40(4): 10-16.
[6] CHEN Qiu-li,YANG Li-chao,LI Hui,WEN Sha,LI Gang,HE Min. Prokaryotic Expression,Purification and Preparation of Polyclonal Antibody of Human Nek2 Protein[J]. China Biotechnology, 2020, 40(3): 31-37.
[7] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[8] Ming-ying LI,Ren-jun WANG,Fun ZHANG,Yan CHI. The Prokaryotic Expression and Activity Analysis of the Fifth Domain of β2GPⅠ and Its Mutants or Short Peptide Fragments[J]. China Biotechnology, 2018, 38(8): 1-9.
[9] Xiao-lu GUO,Xiu-fang GONG,Jia-feng CHEN,Chen-xi DING,Dan HU,Xiu-zhen PAN,Chang-jun WANG. Gene Cloning, Expression and Identification of Phosphoglyceric Kinase of Streptococcus suis Serotype 2[J]. China Biotechnology, 2018, 38(3): 16-23.
[10] Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System[J]. China Biotechnology, 2018, 38(2): 54-60.
[11] HE Ya-nan,SUN Yu-liang,REN Ya-kun,LIANG Sheng-ying,YANG Fen,LIU Yan-li,LIN Jun-tang. The Construction and Functional Analysis of Staphylococcal Enterotoxin-like K and GFP Fusion Protein[J]. China Biotechnology, 2018, 38(12): 14-20.
[12] Jian-wei REN,Jun LI,Shang-ze LI. Human CT55 Protein Prokaryotic Expression and Its Production of Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 1-8.
[13] SUN Wen-jia, YAO Yu-feng, YANG Xu, HUANG Wei-wei, LIU Cun-bao, LONG Qiong, CHU Xiao-jie, MA Yan-bing. Presentation of HPV 16L1 Peptide-based HBcAg Virus-like Particle and Induction of Specific Antibody[J]. China Biotechnology, 2017, 37(3): 58-64.
[14] TUERXUN Zulipiye, CAO Chun-bao, WEN Hao, DING Jian-bing, YIMITI Delixiati. Analysis of Gene Evolution, Protein Expression and Identification of Echinococcus granulosus EgG1Y162[J]. China Biotechnology, 2016, 36(4): 78-87.
[15] ZHOU Liang, YE Hao, ZHOU Li, GUAN Wen, LI Jing-jing, GAO Jin, HAN Wei, YU Yan. Prokaryotic Expression and Purification of Bioactive Human CXCL4[J]. China Biotechnology, 2016, 36(1): 7-13.