Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (04): 33-38    DOI:
    
Optimization of Fermentation for ACE C- Domain from Pichia pastoris
XU Jue,XU Chuan-lian,DU Fang-yao
Download: HTML   PDF(774KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 Angiotensin I-converting enzyme (ACE, EC3.4.15.1) plays an important role in regulating blood pressure. Now, ACE C-domain is identified to be the main site of angiotensin I cleavage in Vivo. In this study, the high expression recombinant Pichia pastoris was constructed and the screening tests was performed in 5 L bio- reactor to obtain the optimal values of several key fermentation parameters. Based on effects on the expression level, the optimal values for the temperature, the con- centrations of methanol and the pH were 26℃, 1.5% (V/V) and 5.5, respectively. Addition of 2%polypeptone to substrate would effectively repress proteolysis. The application of these optimal parameters successfully achieved high-throughput production: the cell density (OD600) of recombinant Pichia pastoris and the yield of crude target protein were respectively 397 mg/L and 446 mg/ L. After the purification with Ni-NTA columns, ACE C-domain was collected with a purity of 98.6%, and the specific activity of it was reached 86 U/mg, which is double fold than that of ACE purchased from Sigma. This provided a zymolytic condition to be used for ACE C-domain in industrial scale production, and provided a high specific activity enzyme for screening specific inhibitor to ACE C-domain.



Key wordsPichia pastoris      ACE C-domain      Proteolysis      Fermentation     
Received: 08 January 2010      Published: 29 April 2010
Cite this article:

XU Jue, HU Chuan-Lian, DU Fang-Yao. Optimization of Fermentation for ACE C- Domain from Pichia pastoris. China Biotechnology, 2010, 30(04): 33-38.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I04/33

[1] Erdos E G. Angiotensin I converting enzyme and the changes in our concepts through the years: Lewis K. Dahl memorial lecture. Hypertension,1990, 16(1): 363370. 
[2] Bhoola K D, Figueroa C D, Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev, 1992,44(1):180. 
[3] Gavras H. Corcoran lecture: angiotensinconverting enzyme inhibition and the heart. Hypertension, 1994, 23: 813 818. 
[4] Linz W, Wiemer G, Gohlke P, et al. Contribution of kinins to the cardiovascular actions of angiotensin converting enzyme inhibitors. Pharmacol Rev, 1995, 47(1): 25 49. 
[5] Dzau V J. Theodore Cooper lecture: tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension, 2001, 37: 10471052. 
[6] Soubrier F, AlhencGelas F, Hubert C, et al. Two putative active centers in human angiotensin Iconverting enzyme revealed by molecular cloning. Proc Natl Acad Sci U S A, 1988, 85(24): 9386 9390. 
[7] Wei L,AlhencGelas F,Corvol P,et al.The two homologousdomains of human angiotensin Iconverting enzyme are both catalytically active.J Biol Chem, 1991, 266: 90029008. 
[8] Dimitris G, Fabrice B, Bertrand C, et al. Roles of the two active sites of somatic angiotensinconverting enzyme in the cleavage of angiotensin I and bradykinin: Insights from selective inhibitors. Circ Res, 2003, 93: 148154. 
[9] Sebastien F, Hong D X, Christine H, et al. Angiotensinconverting enzyme Cterminal catalytic domain is the main site of angiotensin I cleavage in vivo. Hypertension, 2008, 51: 267274. 
[10] 赵钰岚,许传莲.血管紧张素转换酶的结构功能及相关抑制剂. 生物工程学报, 2008, 24(2): 171176. Zhao Y L, Xu C L. Chin J Biotech, 2008, 24(2): 171176. 
[11] 王芸, 华兆哲, 刘立明,等. 重组毕赤酵母高密度发酵生产碱性果胶酶的策略. 生物工程学报, 2003, 24(4): 635639. Wang Y, Hua Z Z, Liu L M, et al. Chin J Biotech, 2003, 24(4): 635639. 
[12] Zhao Y L, Zou W T, Xu C L. HPLC method screening angiotensin converting enzyme inhibitory compounds of flavonoids from Chrysanthemum.Chinese Journal of Pharmaceutical Analysis, 2008, 5: 674677. 
[13] 孙战胜,陈劲春.重组人血清白蛋白在毕赤酵母表达中的降解控制. 北京化工大学学报, 2004, 31(4): 911. Sun Z S,Chen J C. Journal of Beijing University of Chemical Technology, 2004, 31(4): 911. 
[14] 彭毅,杨希才.影响甲醇酵母中外源蛋白表达的因素.生物技术通报, 2000, 4: 3336. Peng Y,Yang X C. Biotechnology Information, 2000, 4: 3336. 
[15] 杨坤宇, 何芳萍, 李少伟等.重组毕赤酵母高密度发酵表达H5N1禽流感病毒糖蛋白. 生物工程学报,2009, 25(5): 773778. Yang K Y, He F P, Li S W, et al. Chin J Biotech, 2009, 25(5): 773778. 
[16] 周祥山, 范位民, 张元兴. 不同甲醇流加策略对重组毕赤酵母高密度发酵生产水蛭素的影响. 生物工程学报, 2002, 18(3): 348351. Zhou X S, Fan W M, Zhang Y X. Chin J Biotech, 2002, 18(3): 348351. 
[17] Lee J, Lee S Y, Park S, et al. Control of fedbatch fermentations. Biotechnol Adv, 1999, 17(1): 2948. 
[18] Ohashi R, Mochizuki E, Suzuki T. A miniscale mass production and separation system for secretory heterologous proteins by perfusion culture of recombinant Pichia pastoris using a shaken ceramic membrane flask. J Biosci Bioeng, 1999, 87(5): 655660.

[1] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[2] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[3] CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid[J]. China Biotechnology, 2021, 41(10): 52-61.
[4] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[5] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[6] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[7] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[8] Yuan TIAN,Yan-ling LI. Biosynthesis of Fusaruside Based on Recombinant Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 8-14.
[9] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[10] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[11] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[12] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[13] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[14] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[15] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.