Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (03): 79-84    DOI:
    
Construction of Genetic Engineering Strains for L-threonine Production by Red Recombination
1.College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
2.Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
Download: HTML   PDF(636KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The threonine genetic engineering strains were constructed by a strategy of cut off branch metabolic pathways and overexpression thr operon in E.coli ITHR. The metA and ilvA genes were knocked out by Red-recombination systems and E.coli ITHR△metA、ITHR△ilvA and ITHR△metA△ilvA were constructed respectively. The pWYE065 containing thr operon were transformed into three mutant strains by electroporation. Red-batch cultures of genetic engineering strains were carried out in 5 L fermentors and the threonine concentration was determined by HPLC. The results showed that E.coli ITHR carrying pWYE065 could accumulated 5.55±0.51 g/L threonine. When metA and ilvA were knocked out respectively, the threonine productions reached 9.77±1.83 g/L and 8.65±1.42 g/L. Both metA and ilvA were knocked out simultaneously, the L-threonine production were increased to 13.6±1.14 g/L. The productivity of L-threonine by E.coli ITHR can be enhanced through the knocking out the gene of the key enzymes in branch metabolic pathways, including the methionine and isoleucine synthesis pathway.



Key wordsE.coli      Red recombination      Gene knockout      L-Threonine      Fermentation     
Received: 23 September 2009      Published: 25 March 2010
Corresponding Authors: Tingyi Wen     E-mail: wenty@im.ac.cn
Cite this article:

YAN Ji-Ai, ZHANG Xue, ZHANG Yun, ZUO Dian-Guang, CHEN Ning, WEN Ting-Yi. Construction of Genetic Engineering Strains for L-threonine Production by Red Recombination. China Biotechnology, 2010, 30(03): 79-84.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I03/79

[1] Debabov V G. The threonine story. Advances in Biochemical Engineering/Biotechnology, 2003, 79: 113136. 
[2] Leuchtenberger W. Amino acids,Technical Production and Use. 1996: 465502. [3] Debabov. Method for preparing strains which produce amino acids: U.S.A, 4278765, 1981. 
[4] 黄金, 徐庆阳, 温廷益, 等. 不同溶氧条件下L苏氨酸生物合成代谢流量分析. 微生物学报, 2008,48 (8): 10561060. Huang J, Xu Q Y, Wen T Y, et al.Acta Microbiologica Sinica, 2008, 48 (8): 10561060. 
[5] 冯美卿, 瞿超进. L苏氨酸制备方法评述. 河北工业科技, 1999, 16 (4): 1518. Feng M Q, Qu C J.Hebei Jounal of Industrial Science and Technology, 1999, 16 (4): 1518. 
[6] Cho, Jae Y, Lee. Method for producing Lthreonine: U.S.A, 7074602, 2006711. 
[7] 张雪, 闫继爱, 于雷, 等. 含苏氨酸操纵子重组质粒的构建及其对大肠杆菌L苏氨酸积累的影响. 微生物学报, 2009, 49(5): 3237. Zhang X, Yan J A, Yu L, et al.Acta Microbiologica Sinica, 2009, 49(5): 3237. 
[8] 张雪,温廷益. Red重组系统用于大肠杆菌基因修饰研究进展. 中国生物工程杂志, 2008, 28(12): 8993. Zhang X, Wen T Y. China Biotechnology, 2008, 28(12): 8993. 
[9] 徐庆阳, 冯志彬, 孙玉华, 等. 溶氧对L苏氨酸发酵的影响. 微生物学通报, 2007, 34(2): 312314. Xu Q Y, Feng Z B, Sun Y H, et al.Microbiology, 2007, 34(2): 312314. 
[10] Lee M H, Lee H W, Park J H, et al. Improved Lthreonine production of Escherichia coli mutant by optimization of culture conditions. Journal of Bioscience and Bioengineering, 2006, 101 (2):127130. 
[11] 黄金, 黄磊, 谢希贤, 等. 利用响应面法优化L苏氨酸发酵条件. 食品与发酵工业, 2008, 34 (1): 3942. Huang J, Huang L, Xie X X, et al.Food and Fermentation Industries, 2008, 34 (1): 3942. 
[12] Theze J, SaintGirons I. Threonine locus of Escherichia coli K12: genetic structure and evidence for an operon. The Journal of Bacteriology, 1974, 118 (3): 990998. 
[13] Courcelle J, Hanawalt P C. RecQ and RecJ process blocked replication forks prior to the resumption of replication in UVirradiated Escherichia coli. Molecular Genetics and Genomics, 1999, 262(3): 543551. 
[14] Datsenko K A, Wanner B L. Oneste Pinactivation of chromosomal genes in Escherichia coli K12 using PCR products. Proc Natl Acad Sci U S A, 2000, 97(12):66406645. 
[15] 韩聪, 张惟材, 游松, 等. 大肠杆菌ptsG基因敲除及其缺陷株生长特性研究. 生物工程学报, 2004, 20(1):1620. Han C, Zhang W C, You S, et al. Chinese Journal of Biotechnology, 2004, 20(1):1620. 
[16] SerraMoreno R, Acosta S, Hernalsteens J P, et al. Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Mol Biol, 2006, 7:31. 
[17] 白光兴, 孙志伟, 黄莺, 等. 利用Red重组系统对大肠杆菌ClpP基因的敲除. 中国生物化学与分子生物学报, 2005, 21(1):3538. Bai G X, Sun Z W, Huang Y, et al. Chinese Journal of Biochemistry & Molecular Biology, 2005, 21(1): 3538.

[1] CHEN Kai-tong,ZHENG Wen-long,YANG Li-rong,XU Gang,WU Jian-ping. Immobilized L-threonine Aldolase by Amino Resin and Its Application[J]. China Biotechnology, 2021, 41(9): 55-63.
[2] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[3] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[4] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[5] YANG Li,SHI Xiao-yu,LI Wen-lei,LI Jian,XU Han-mei. Optimization of Electroporation Conditions in Construction of Phage Display Antibody Library[J]. China Biotechnology, 2020, 40(4): 42-48.
[6] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[7] GUO Sheng-nan, LI Xin-xiao, WANG Feng, LIU Kun-mei, DING Na, HU Qi-kuan, SUN Tao. Establishment and Identification of the Neocortex and Hippocampus GABRG2 Knockout Mice and Its Preliminary Study in Generalized Epilepsy with Febrile Seizures Plus[J]. China Biotechnology, 2020, 40(3): 9-20.
[8] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[9] Hang Hai-ying,Liu Chun-chun,Ren Dan-dan. Development, Application and Prospection of Flow Cytometry[J]. China Biotechnology, 2019, 39(9): 68-83.
[10] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[11] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[12] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[13] WU Guo-guo,SONG Shu-ting,YUE Rong,ZHANG Jing,GUAN Ying,WANG Yue,LIU Bao-ai,LV Xue-min,WEI Jian-jun,ZHANG Hui-tu. Application of Counterseletable Gene upp in Genetic Manipulation of Streptomyces fungicidicus[J]. China Biotechnology, 2019, 39(11): 78-86.
[14] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[15] LU Hai-yan,LI Jia-man,SUN Si-fan,ZHANG Xiao-mao,DING Juan-juan,ZOU Shao-lan. Construction of an Auxotrophic Mutant from an Industrial Saccharomyces cerevisiae Strain by CRISPR-Cas9 System[J]. China Biotechnology, 2019, 39(10): 67-74.