Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (03): 105-111    DOI:
    
Advances on Cyanobacteria Genetic Engineering Applications
1.Department of Biopharmaceuticals, School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100102,China
2.School of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300450,China
3.Institute of Botany, Chinese Academy of Sciences, Beijing 100093,China
Download: HTML   PDF(521KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cyanobacteria are used as a host of gene engineering to express foreign gene, their unique properties gradually attracting scientists' attention. The stable cyanobacteria transformation system has been constructed since 1990. In the past 20 years, more than 30 foreign genes have been successfully expressed in cyanobacteria. With the further investigation, cyanobacteria transgenic expression system has the potential to be extensively used for production of recombinant drugs, clean energy resources,  farm chemical and for preventing the environment pollution et al. This review summed up the development of cyanobacteria genetic engineering and their uses in medicine, environment, agriculture and biosensor. Then, this review analyzed the development bottlenecks of the cyanobacteria transgenic engineering, the low expression rate of the foreign gene in cyanobacteria. Finally,it summarized the efforts that many scientists have made to improve the low expression rate, including: choosing high efficient gene and oral preparation, optimize transcription and translation component, adjust the host cell`s physiological state, et al.



Key wordsCyanobacteria      Genetic Engineering      Expression system     
Received: 21 October 2009      Published: 25 March 2010
Cite this article:

XI Chao, WANG Chun-Mei, SHI Ding-Ji. Advances on Cyanobacteria Genetic Engineering Applications. China Biotechnology, 2010, 30(03): 105-111.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I03/105

[1] Vioque A. Transformation of cyanobacteria. Adv Exp Med Biol, 2007, 616: 1222. 
[2] 魏兰珍,马为民,王全喜,等.蓝藻基因转移系统的选择与建立.中国生物工程杂志,2004,24(1):1822. Wei L Z, Ma W M, Wang Q X, et al. China Biotechnology, 2004, 24(1): 1822. 
[3] 陈翠丽,郭俊霞,宗伟,等. 蓝藻结合转移系统以及相关因素.北京联合大学学报,2007,12(4):3841. Chen C L, Guo J X, Zong W, et al. Journal of Beijing Union University(Natural Sciences), 2007, 12(4): 3841. 
[4] 楼士林,杜志强,吴巧娟.重组质粒pPRS1超声转化蓝藻Chroococcus sp.的研究.厦门大学学报,1995,34(4):619623. Lou S L, Du Z Q, Wu Q J. Journal of Xiamen University(Natural Science), 1995, 34(4): 619623. 
[5] Murakami R, Miyake A, Iwase R, et al. ATPase activity and its temperature compensation of the cyanobacterial clock protein KaiC. Genes Cells, 2008, 13(4): 387395. 
[6] 秦京东,邵宁,施定基,等. 聚球藻7942高效泌氨突变种的获得及其泌氨、谷氨酰胺合成酶活性、光合和生长.植物学报,1999,41(1):6570. Qin J D, Shao N, Shi D J,et al. Acta Botanica sinica, 1999, 41(1): 6570. 
[7] Koksharova O A, Wolk C P. Genetic tools for cyanobacteria. Appl Microbiol Biotechnol, 2002, 58: 123137. 
[8] Tandeau de Marsac N, de la Torte F, Szulmajster J. Expression ofthe larvicidal gene of Bacillus sphaericus 1593M in the cyanobacterium Anacystis nidulans R2. Mol Gen Genet, 1987, 209(2): 396398. 
[9] 徐旭东,孔任秋,胡玉祥. 基因工程杀蚊幼蓝藻的研究.中国媒介生物学及控制杂志,1993,4(4):244247. Xu X D, Kong R Q, Hu Y X. Chinese Journal of Vector Biology and Control, 1993, 4(4): 244247. 
[10] 李轩,林晨,张雪燕,等. 转入人肿瘤坏死因子α基因的鱼腥藻IB02(+)的细胞毒活性及其体内抗肿瘤药效学研究.中国医药生物技术,2008,3(5):350355 Li X, Lin C, Zhang X Y, et al. China Med Biotechnol. 2008, 3(5): 350355. 
[11] 陈翠丽,施定基. 转人粒细胞集落刺激因子(hGCSF)基因的鱼腥藻的构建.北京联合大学学报(自然科学版),2005,19(3):6063. Chen C L, Shi D J. Journal of Beijing Union University, 2005, 19(3): 6063. 
[12] 楼士林,章军. 蓝藻基因表达载体系统的构建和应用.厦门大学学报,2001,40(2):586590. Lou S L, Zhang J. Journal of Xiamen University(Natural Science), 2001, 40(2): 586590. 
[13] 章军,秦燕,欧阳青,等. 蓝藻Synechococcus sp.PCC 7942穿梭表达质粒的构建及胸腺素α1基因的表达.实验生物学报,2003,36(1):14. Zhang J, Qin Y, OuYang Q, et al. Acta Biologiae Experimentalis Sinica, 2003, 36(1): 14. 
[14] 戴溦,施定基,张卉,等. 人表皮生长因子(hEGF)基因在蓝藻中的表达.植物学报,2001,43(12):12601264. Dai w, Shi D J, Zhang H, et al. Acta Botanica Sinica, 2001, 43(12): 12601264. 
[15] 罗娜,宁叶,施定基,等. 人尿激酶原基因在聚球藻7002中的克隆和表达.植物学报,2000,42(9):931935. Luo N, Ning Y, Shi D J, et al. Acta Botanica Sinica, 2000, 42(9): 931935. 
[16] 郭祥学,赵晖,施定基,等. 小鼠金属硫蛋白在聚胞藻中的金属诱导表达与纯化.生物工程学报,1998,14(4):405411. Guo X X, Zhao H, Shi D J, et al. Chinese Journal of Biotechnology, 1998, 14(4): 405411. 
[17] 魏兰珍,金锐,马为民,等. hGMCSF基因穿梭表达载体的构建及其在鱼腥藻7120中的克隆.植物研究,2005,25(4):436440. Wei L Z, Jin R, Ma W M, et al. Bulletin of Botanical Research, 2005, 25(4): 436440. 
[18] 宋凌云,施定基,宁叶. 用同源重组法将人肝金属硫蛋白突变体ββ基因整合在集胞藻6803中表达.植物学报,2001,43(4):399404. Song L Y, Shi D J , Ning Y, et al.Acta Botanica Sinica, 2001, 43(4): 399404. 
[19] Takeshima Y, Takatsugu N, Sugiura M, et al. Highlevel expression of Human Superoxide Dismutase in the Cyanobacterium Anacystis nidulans 6301. Proceedings of the National Academy of Sciences, 1994, 91(21): 96859689. 
[20] Harker M, Hirschberg J. Biosynthesis of ketocarotenoids in transgenic cyanobacteria expressing the algal gene for betaC4oxygenase, crtO. FEBS Lett, 1997, 404(23): 129134. 
[21] Yu R, Yamada A, Watanabe K, et al. Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp. Lipids, 2000, 35(10): 10611064. 
[22] Wada H, Gombos Z, Murata N. Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature. 1990, 347(6289): 200203. 
[23] Erbe J L,Taylor K B,Hall L M. Expression of mouse metallothionein in the cyanobacterium Synechococcus PCC 7942. Journal of Industrial Microbiology and Biotechnology, 1996, 17(1): 4146. 
[24] 郭祥学,赵晖,施定基,等. 小鼠金属硫蛋白基因在丝状体蓝藻中的表达及对重金属抗性的提高.植物学报,1998,40(4):320324. Guo X X, Zhao H, Shi D J, et al. Acta Botanica Sinica, 1998, 40(4): 320324. 
[25] Chaurasia N, Mishra Y, Rai L C. Cloning expression and analysis of phytochelatin synthase (pcs) gene from Anabaena sp. PCC 7120 offering multiple stress tolerance in Escherichia coli. Biochem Biophys Res Commun, 2008, 376(1): 225230. 
[26] 陈思嘉,郑文杰,杨芳. 蓝藻对重金属的生物吸附研究进展.海洋环境科学,2006,25(4):103106. Chen S J, Zheng W J, Yang F. Marine Environmental Science, 2006, 25(4): 103106. 
[27] Chungjatupornchai W, FaAroonsawat S. Biodegradation of organophosphate pesticide using recombinant Cyanobacteria with surface and intracellularexpressed organophosphorus hydrolase. Journal of Microbiology and Biotechnology, 2008, 18(5): 946951. 
[28] Kuritz T,Wolk C P. Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol, 1995, 61(1): 234238. [29] Kuritz T, Bocanera L V, Rivera N S. Dechlorination of lindane by the cyanobacterium Anabaena sp. strain PCC7120 depends on the function of the nir operon. Journal of Bacteriology, 1997, 179(10) :33693370. 
[30] Barton J W, Kuritz T, O’Connor L E, et al. Reductive transformation of methyl parathion by the cyanobacterium Anabaena sp. strain PCC 7120. Appl Microbiol Biotechnol, 2004,65(3): 330335. 
[31] Suzuki T,Miyake M, Tokiwa Y, et al. Recombinant cyanobacterium that accumulates poly(hydroxybutyrate). Biotechnology Letters, 1996, 18(9): 10471050. 
[32] 唐功利,杨春松,鲍建绍,等. 丙糖磷酸异构酶、果糖1,6二磷酸醛缩酶及果糖1,6二磷酸酶的共表达.生物化学与生物物理学报,2001,33(1):131136. Tang G L, Yang C S, Bao J S, et al. Acta Biochimica et Biophysica Sinica, 2001, 33(1): 131136. 
[33] 康瑞娟,施定基,丛威,等.果糖1,6二磷酸醛缩酶和丙糖磷酸异构酶共表达对蓝藻光合作用效率的影响.生物工程学报,2004,20(6):851854. Kang R J, Shi D J, Cong W, et al. Chinese Journal of Biotechnology, 2004, 20(6): 851854. 
[34] 冯燕,陈晓,施定基,等. 水稻胞质FBA基因在鱼腥藻7120中的表达及其对光合作用的调控.植物研究,2006,26(6):691698 Feng Y, Chen X, Shi D J, et al. Bulletin of Botanical Research, 2006, 26(6): 691698. 
[35] Jonathan G. Transgenics are imperative for biofuel crops. Plant Sciences, 2008, 174: 246263. 
[36] 张学成,张晓辉,徐涤. 蓝藻氢代谢相关酶及其分子生物学研究进展.中国海洋大学学报,2006,36(1):1925. Zhang X C, Zhang X H, Xu D. Periodical of Ocean University of China, 2006, 36(1): 1925. 
[37] Peer M S, Skye R, ThomasHall, et al. Second generation biofuels: Highefficiency microalgae for biodiesel production. BioEnergy Research, 2008, 1: 2043. 
[38] Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J, 2008, 54(4): 621639. 
[39] Savage D F, Way J, Silver P A. Defossiling fuel: how synthetic biology can transform biofuel production. ACS Chem Biol. 2008, 3(1):1316. 
[40] Dismukes G C, Carrieri D, Bennette N, et al. Aquatic phototrophs: efficient alternatives to landbased crops for biofuels. Curr Opin Biotechnol. 2008, 19(3):235240. 
[41] Van Hulten M C, Witteveldt J, Snippe M, et a1. White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp. Virology, 2001, 285(2): 228233. 
[42] 张春莉,施定基,黄倢,等.白斑综合症病毒(WSSV)囊膜蛋白VP28基因的克隆及在蓝藻中表达载体的构建.海洋科学,2003,27(2):7276. Zhang C L, Shi D J, Huang J, et al. Marine Sciences, 2003, 27(2): 7276. 
[43] 邓元告,侯李君,邓丽珍,等. 对虾白斑病毒VP28基因在聚球藻中的表达与分析.天津科技大学学报,2008,23(1):2932. Deng Y G, Hou L J, Deng L Z, et al. Journal of Tianjin University of Science & Technology, 2008, 23(1): 2932. 
[44] 王春梅. 花叶病毒外壳蛋白致病机理研究. 杨凌:西北农业大学农学院,1999. Wang C M. The mechanism of mosaic viruses CP in the development of mosaic symptom. Yangling:Northwestern Agricultural University Agricultural College,1999. 
[45] Manasherob R, OtienoAyayo Z N, BenDov E, et al. Enduring toxicity of transgenic Anabaena PCC7120 expressing mosquito larvicidal genes from Bacillus thuringiensis ssp. Israelensis. Environ Microbiol, 2003, 5(10): 9971001. 
[46] Shao C Y, Howe C J, Porter A J, et al. Novel cyanobacterial biosensor for detection of herbicides. Applied and environmental microbiology, 2002, 68(10): 50265033. 
[47] Ivanikova N V, McKay R M L, Bullerjahn G S, et al. Nitrate utilization by phytoplankton in Lake Superior is impaired by low nutrient (P, Fe) availability and seasonal light limitation  A cyanobacterial bioreporter study. Journal of Phycology, 2007, 43(3): 475484. 
[48] Eriksen N T. The technology of microalgal culturing. Biotechnol Lett, 2008, 30(9): 15251536. 
[49] 朱学义,张明华,章华西,等. 葡萄糖浓度对转人肿瘤坏死因子α鱼腥藻IB02培养过程的影响.生物技术通讯,2008,19(2):255258. Zhu X Y, Zhang M H, Zhang H X, et al. Letters in Biotechnology, 2008, 19 (2): 255258. 
[50] Elhai J.Strong and regulated promoters in the cyanobacterium Anabaena PCC 7120. FEMS Microbiol lett, 1993, 114(2): 179184. 
[51] 魏兰珍,谭玮,王全喜. 启动子Pcpcβ提高鱼腥藻7120中hGMCSF基因表达效率的研究.西北植物学报,2008,28(1):3742. Wei L Z, Tan W, Wang Q X. Acta Botanica BorealiOccidentalia Sinica, 2008, 28(1): 3742. 
[52] 欧阳叶新,施定基,梁承邺,等. 高温和红光诱导的鱼腥藻7120短藻丝体中TNFα基因表达效率的提高.武汉植物学研究,2003,21(4):301307. OuYang Y X, Shi D J, Liang C Y, et al. Journal of Wuhan Botanical Research, 2003, 21(4): 301307.

[1] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[2] WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems[J]. China Biotechnology, 2021, 41(2/3): 129-137.
[3] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[4] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[5] CHEN Chun-lin,QIN Song,SONG Wan-lin,LIU Zhi-dan,LIU Zheng-yi. Progress on Biological Preparation of Alginate Oligosaccharides[J]. China Biotechnology, 2020, 40(10): 85-95.
[6] QI Jia-long, GAO Rui-yu, JIN Shu-mei, GAO Fu-lan, YANG Xu, MA Yan-bing, LIU Cun-bao. Expression and Identification of Varicella-Zoster Virus Glycoprotein E and Immunogenicity Assay[J]. China Biotechnology, 2019, 39(8): 17-24.
[7] Shu-xia MA,Ling ZHANG,Jin-fei YAN,Song YOU. Study on the Synthesis of Polyunsaturated Fatty Acids by FattyAcid Synthase Pathway of Schizochytrium sp.[J]. China Biotechnology, 2018, 38(9): 27-34.
[8] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[9] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[10] LI Dan, HUANG He. Heterologous Expression of Nanobodies:a Recent Progress[J]. China Biotechnology, 2017, 37(8): 84-95.
[11] GAO Jiao-jiao, YANG Shu-lin. Advances in Optimization of Hyaluronic Acid Production by Genetic Engineering Technology[J]. China Biotechnology, 2017, 37(8): 72-77.
[12] WANG De-hua, MA Yi, HAN Lei, XIAO Xing, LI Yan-wei, DANG Shi-ying, FAN Zhi-yong, WEN Tao, HONG An. Preparation of Novel Recombinant PACAP Derivative MPL-2 and Its Effect on Anti-type 2 Diabetes Mellitus[J]. China Biotechnology, 2017, 37(5): 59-65.
[13] CHEN Jing, KANG Ci-ming, LUO Wen-xin. Advance in Research on Antibody Half-Life Related Engineering[J]. China Biotechnology, 2017, 37(5): 87-96.
[14] HU Li-qiang, ZHENG Wen, ZHONG Yi, DU Dan, YANG Hao, GONG Meng. Comparison of Expression and Activity of Antiviral Protein RC28 in Escherichia coli and Pichia pastoris[J]. China Biotechnology, 2017, 37(1): 14-20.
[15] GAN Chun-yang, LIU Ya, LUO Ying-ying, ZHANG Wen-lu, HUANG Ai-long, CAI Xue-fei, HU Jie-li. A Cloning Strategy Suitable for DNA Modification by Fragment Scanning[J]. China Biotechnology, 2016, 36(8): 55-63.