Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (01): 73-79    DOI:
    
The Clinical Researches of Recombinant Adeno-associated Vector
WANG Qi-zhao1,2,LV Ying-hui1,2,XIAO Wei-dong2,3,DIAO Yong1,2,XU Rui-an1,2
1.Engineering Research Center of Molecular Medicine, Ministry of Education & Institute of Molecular Medicine, Huaqiao University,Quanzhou 362021,China
2.Department of Pediatrics, University of Pennsylvania, Philadelphia 19104,PA
Download: HTML   PDF(529KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Numerous clinical trials (67) are using adeno-associated vectors (rAAV) as a gene delivery system so far. It becomes more and more alluring by its safety, efficiency, stability and long expression profiles. Recently, exciting outcomes have been obtained by rAAV clinical application in a retinal degeneration disease, Leber’s congenital amaurosis. Clinical trails provide better information for us to understand about the rAAV based gene drugs and bring more challenges as well, immunogenicity and drug safety, etc, in particular.



Key wordsGene therapy;Adeno-associated vector;Clinical trial      Retinal degeneration disease;microRNA     
Received: 12 June 2009      Published: 27 January 2010
Cite this article:

WANG Qi-Zhao, LV Ying-Hui, XIAO Wei-Dong, DIAO Yong, HU Rui-An. The Clinical Researches of Recombinant Adeno-associated Vector. China Biotechnology, 2010, 30(01): 73-79.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I01/73

[1] 许瑞安, 陈凌,肖卫东. 分子基因药物学. 北京:北京大学出版社&北京大学医学出版社, 2009, 240. Xu R A, Chen L, Xiao W. Molecular Gene Medicine. Beijing:Peking University Press and Peking University Medical Press, 2009, 240. 
[2] Xu R A, Sun X, Tse L Y, et al. Longterm expression of angiostatin and suppression of liver metastatic cancer. Hepatology, 2003, 37(6):14511461. 
[3] Xu R A, Harrison P M, Chen M, et al. Cytoglobin protects against damageinduced liver fibrosis. Mol Ther, 2006, 13(6):10931100. 
[4] During M J, Xu R A, Young D, et al. Peroral gene therapy of lactose in tolerance using an adenoassociated virus vector. Nat Med, 1998, 4: 11311136. 
[5] During M J, Symes C W, Lawlor P A, et al. An oral vaccine against NMDAR1 with efficacy in experimental stroke and epilepsy. Science, 2000, 287(5457): 14531460. 
[6] Maguire A M, Simonelli F, Pierce E A, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis.N Engl J Med, 2008, 358(21):22402248. 
[7] Bainbridge J W, Smith A J, Barker S S, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med, 2008, 358(21):22312239. 
[8] Hauswirth W W, Aleman T S, Kaushal S, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adenoassociated virus gene vector: shortterm results of a phase I trial. Hum Gene Ther, 2008, 19(10): 979990. 
[9] Mueller C, Flotte T R.Clinical gene therapy using recombinant adenoassociated virus vectors. Gene Ther, 2008, 15, 858863. 
[10] Jacobson S G, Acland G M, Aguirre G D, et al. Safety of recombinant adenoassociated virus type 2RPE65 vector delivered by ocular subretinal injection. Mol Ther, 2006, 13:10741084. 
[11] Le Meur G, Stieger K, Smith A J, et al. Restoration of vision in RPE65de?cient Briard dogs using an AAV serotype 4 vector that speci?cally targets the retinal pigmented epithelium. Gene Ther,2007,14:292303. 
[12] Roman A J, Boye S L, Aleman T S, et al. Electroretinographic analyses of Rpe65mutant rd12 mice: developing an in vivo bioassay for human gene therapy trials of Leber congenital amaurosis. Mol Vis, 2007, 13:17011710. 
[13] Cideciyan A V, Aleman T S, Boye S L, et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA, 2008, 105:1511215117. 
[14] Manno C S, Chew A J, Hutchison S, et al. AAVmediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood, 2003, 101: 29632972. 
[15] Manno C S, Pierce G F, Arruda V R, et al. Successful transduction of liver in hemophilia by AAVFactor IX and limitations imposed by the host immune response. Nat Med, 2006, 12: 342347. 
[16] Zaiss A K, Muruve D A. Immunity to adenoassociated virus vectors in animals and humans: a continued challenge. Gene Ther, 2008, 15:808816. 
[17] Xiao W, Narendra C, Truneh A, et al. Humoral immunity to adenoassociated virus type 2 vectors following administration to murine and nonhuman primate muscle. J Virol, 2000, 74:24202425. 
[18] Xiao W, Chirmule N, Schnell M A, et al. Route of administration determines induction of Tcellindependent humoral responses to adenoassociated virus vectors. Mol Ther, 2000,1(4): 323329. 
[19] Daya S, Berns K I. Gene therapy using adenoassociated virus vectors. Clin Microbiol Rev, 2008, 21(4):583593. 
[20] Zabner J, Seiler M, Walters R, et al. Adenoassociated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J Virol, 2000, 74(8): 38523858. 
[21] Gao G, Vandenberghe L H, Alvira M R, et al. Clades of adenoassociated viruses are widely disseminated in human tissues. J Virol, 2004, 78(12):63816388. 
[22] Halbert C L, Allen J M, Miller A D. Adenoassociated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol, 2001, 75(14):66156624. 
[23] Limberis M P, Wilson J M. Adenoassociated virus serotype 9 vectors transduce murine alveolar and nasal epithelia and can be readministered. Proc Natl Acad Sci USA, 2006, 103(35):1299312998. 
[24] Mori S, Takeuchi T, Enomoto Y, et al. Tissue distribution of cynomolgus adenoassociated viruses AAV10, AAV11, and AAVcy.7 in naturally infected monkeys. Arch Virol, 2008, 153(2): 375380. 
[25] Schmidt M, Voutetakis A, Afione S, et al. Adenoassociated virus type 12 (AAV12): a novel AAV serotype with sialic acid and heparan sulfate proteoglycanindependent transduction activity. J. Virol, 2008, 82:13991406. 
[26] Xu R A, Janson C G, Mastakov M, et al. Quantitative comparison of expression with adenoassociated virus (AAV2) brainspecific gene cassettes. Gene Ther, 2001, 8:13231332. 
[27] Wang Q Z, Lv Y H, Xu R A. Dosereponse and control of adenoassociated viral vectors based prechilical and clinical gene therapy. Chinese Journal Clinical Pharmacology and Therapeutics, 2008, 13(10):11821194. 
[28] Janson C, McPhee S, Bilaniuk L, et al. Clinical protocol. Gene therapy of Canavan disease: AAV2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. Hum Gene Ther, 2002, 13:13911412v 
[29] Lu H, Qu G, Xu R, et al. Systemic elimination of de novo capsid protein synthesis from replication competent AAV contamination. Mol Ther, 2009, (in press). 
[30] Kaplitt M G, Feigin A, Tang C, et al. Safety and tolerability of gene therapy with an adenoassociated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet, 2007, 23; 369(9579):20972105. 
[31] Apparailly F, Khoury M, Vervoordeldonk M J, et al. Adenoassociated virus pseudotype 5 vector improves gene transfer in arthritic joints. Hum Gene Ther, 2005, 16(4):426434. 
[32] Cao L, Lin E J D, Cahill M C, et al. Molecular therapy of obesity and diabetes by a physiological autoregulatory approach. Nat Med, 2009, 15:447454. 
[33]吕颖慧, 王启钊,肖卫东等.自身互补型腺相关病毒载体研究进展.生物工程学报, 2009, 25(5): 658664. Lv Y, Wang Q, Xiao W, et al. Chin J Biotech,2009, 25(5): 658664. 
[34] Liu Y L, Wagner K, Robinson N, et al. Optimized production of hightiter recombinant adenoassociated virus in roller bottles. Biotechniques, 2003, 34:184189. 
[35] 刁勇, 许瑞安. 细胞生物技术实验指南.北京:化学化工出版社, 2009: 306337. Diao Y, Xu R A.Protocols of Cellular and Molecular Biotechnology. Beijing:Peking Chemical Industry Press, 2009: 306337. 
[36] Chang J, Nicolas E, Marks D, et al. miR122, a mammalian liverspecific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT1. RNA Biol, 2004, 1(2):106113. 
[37] Wang J, Xie J, Lu H, et al. Existence of transient functional doublestranded DNA intermediates during recombinant AAV transduction. Proc Natl Acad Sci USA, 2007, 104(32): 1310413109. 
[38] Nathwani A C, Gray J T, McIntosh J, et al. Safe and efficient transduction of the liver after peripheral vein infusion of selfcomplementary AAV vector results in stable therapeutic expression of human FIX in nonhuman primates. Blood, 2007, 109(4): 1414 1421. 
[39] Nathwani A C, Gray J T, McIntosh J, et al. Selfcomplementary adenoassociated virus vectors containing a novel liverspecific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood, 2006, 107(7): 26532661. 
[40] Miller D G, Trobridge G D, Petek L M, et al. Largescale analysis of adenoassociated virus vector integration sites in normal human cells. J Virol, 2005, 79: 1143411442. 
[41] Nakai H, Wu X, Fuess S, et al. Largescale molecular characterization of adenoassociated virus vector integration in mouse liver. J Virol, 2005, 79: 36063614. 
[42] Smith R H. Adenoassociated virus integration: virus versus vector. Gene Ther, 2008, 15:817822. 
[43] Wang Q Z, Lv Y H, Yong D, et al. The design of vectors for RNAi delivery system. Curr Pharm Design, 2008, 14(13):13271340. 
[44] Shu J B, Diao Y, Xiao W, et al. The development trend of chimeric vector of adenovirus/adeno associated viral. J Huaqiao University (Natural Science), 2008, 29(2):172176. 
[45] Corte′s M L, Oehmig A, Saydam O, et al. Targeted integration of functional human ATM cDNA into genome mediated by HSV/AAV hybrid amplicon vector. Mol Ther, 2008, 16: 8188.

No related articles found!