Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (01): 56-61    DOI:
    
Effects of T20N Site-directed Mutation on GTPase Activities of OsRacD from Oryza sativa
LIU Xiao-fei,LIANG Wei-hong  
College of Life Sciences , Henan Normal University , Xinxiang 453007, China
Download: HTML   PDF(778KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

OsRacD belonging to rice Rho family of the small GTP binding proteins, is a pivotal gene involved in rice photoperiod fertility conversion of photoperiod sensitive genic male sterile rice, which influences rice fertility via controlling the pollen tube growth.T20N site-directed mutation was introduced into its highly conserved G1 motif by PCR-mediated method to mimic its GDP-binding state based on the sequences alignment and conserved domains analysis. The prokaryotic expression vector of OsRacD and T20N-OsRacD were constructed , and the His6 tag fused proteins were expressed and purified from E.coli. After identified by Western blot,the GTP hydrolysis activities were detected. The results showed that the GTPase activities of T20N-OsRacD were significantly reduced comparing with that of OsRacD, suggested that  OsRacD and T20N-OsRacD have different biochemical characteristics.



Key wordsOsRacD      site-directed mutagenesis      prokaryotic expression and purification      GTPase activity     
Received: 23 June 2009      Published: 27 January 2010
Corresponding Authors: Liang Wei-Hong     E-mail: liangwh@henannu.edu.cn
Cite this article:

LIU Xiao-Fei, LIANG Wei-Gong. Effects of T20N Site-directed Mutation on GTPase Activities of OsRacD from Oryza sativa. China Biotechnology, 2010, 30(01): 56-61.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I01/56

[1] Bourne H R, Sanders D A, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature, 1991, 349(6305): 117127. 
[2] Hall A. Small GTPbinding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol, 1994, 10(1):3154. 
[3] Yang Z B, Waston J C. Molecular cloning and characterization of rho, a rasrelated small GTPbinding protein from the garden pea. Proc Natl Acad Sci USA, 1993, 90(18): 87328736. 
[4] Jones M A. The Arabidopsis RopGTPase is a positive regulator of both root hair inhtiation and tip growth. Plant Cell, 2002, 14(4): 763776. 
[5] Fu Y, Yang Z. Rop GTPase controls plant cell morphogenesis via a novel form of cortical Factin. Plant Cell, 2002, 14(4):777794. 
[6] Deborah P D, Julie R, Andrawis A, et al. Genes encoding small GTPbinding analogous to mammalian rac are preferentially expressed in developing cotton fibers. Mol Geb Genet, 1995, 248(1): 4351. 
[7] Trotochaud A E, Hao T, Wu G, etal. The CLAVATA1 receptorlike kinase requires CLAVATA3 for its assembly into a signaling complex that include KAPP and a Rhorelated protein. Plant Cell, 1999, 11(3): 393406. 
[8] Yang Z. Cell Polarity Signaling in Arabidopsis. Annu Rev Cell Dev Biol,2008, 24(1):551575. 
[9] 米志勇, 王树声,吴乃虎. 水稻低分子量GTP结合蛋白基因OsRacD的分离.科学通报,2000,45(19):20472054. Mi Z Y, Wang S S, Wu N H.Chinese Science Bulletin,2000, 45(19):20472054. 
[10] 叶建荣,黄美娟,吴乃虎.转水稻OsRacD 反义基因拟南芥植株的育性分析.自然科学进展,2003,13(3):424428. Ye J R,Huang M J, Wu N H.Progress in Natural Science,2003,13(3):424428. 
[11] 叶建荣,黄美娟,吴乃虎.OsRacD基因表达与光敏核不育水稻光周期育性转换的相关性.自然科学进展,2004, 14(2),166172. Ye J R,Huang M J, Wu N H.Progress in Natural Science,2004, 14(2):166172. 
[12] 梁卫红,吴乃虎. G15V点突变对水稻OsRacD基因蛋白产物效应的影响.中国生物化学与分子生物学报,2006,22(4):338342. Liang W H, Wu N H.Chinese Journal of Biochemistry and Molecular Biology, 2006,22(4):338342. 
[13] Aiyar A, Xiang Y, Leis J. Sitedirected mutagenesis using overlap extension PCR.Methods Mol Biol,1996,57:177191. 
[14] Li H,Shen J G,Yang Z B,et al.The Rop GTPase Switch Controls Multiple Developmental Processes in Arabidopsis.Plant Physiology, 2001, 126(2):670684. 
[15] Cool R H, Gudular S, Christian U, et al. The Ras mutant D119N is both dominant negative and active. Mol Cell Biol, 1999, 19(9): 62976305. 
[16] Olofsson B. Rho guanine dissociation inhibitors: pivotal molecular incellular signaling. Cell Signal, 1999, 11(8): 545554. 
[17] Yang Z B, Waston J C. Molecular cloning and characterization of rho, a rasrelated small GTPbinding protein from the garden pea. Proc Natl Acad Sci USA, 1993, 90(8): 87328376. 
[18] Berken A. ROPs in the spotlight of plant signal transduction. Cell Mol Life Sci, 2006, 63(21): 24462459. 
[19] 梁卫红,刘肖飞,毕佳佳.G15V和T20N定点突变对水稻OsRacD胞内定位和蛋白互作特性的影响.中国生物化学与分子生物学学报,2009,25(9):828833. Liang W H, Liu X F, Bi J J.Chinese Journal of Biochemistry and Molecular Biology,2009,25(9):828833.

[1] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[2] SU Yong-jun,HU Die,HU Bo-chun,LI Chuang,WEN Zheng,ZHANG Chen,WU Min-chen. Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis[J]. China Biotechnology, 2020, 40(3): 88-95.
[3] Ting-ting KAN,Xun-cheng ZONG,Yong-jun SU,Ting-ting WANG,Chuang LI,Die HU,Min-chen WU. Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether[J]. China Biotechnology, 2019, 39(6): 9-16.
[4] Hao-yi MENG,Dan-yang LI,Zheng-yang SUN,Zhao-yong YANG,Zhi-fei ZHANG,Li-jie YUAN. Substrate-binding Site of Ubiquitous Mitochondrial Creatine Kinase from Homo sapiens[J]. China Biotechnology, 2018, 38(5): 24-32.
[5] LI Xue-qing, YUAN Feng-jiau, CHENG Jian-qing, DONG Yun-hai, LI Jian-fang, WU Min-chen. Effect of Amino Acid H321 on the Enzymatic Properties of Hybrid β-Mannanase AuMan5Aloop[J]. China Biotechnology, 2017, 37(2): 48-53.
[6] WU Qin, HU Die, LI Xue-qing, YUAN Feng-jiao, LI Jian-fang, WU Min-chen. Site-directed Mutagenesis of Y13F to Improve the Thermotolerance of Mesophilic Xylanase from Aspergillus oryzae[J]. China Biotechnology, 2016, 36(12): 36-41.
[7] XIANG Mian, ZHU Jian-quan, YU Ji-hua, LI Yang-yang, LI Juan-juan, LIU Zu-bi, WANG Wan-jun, LIAO Hai, ZHOU Jia-yu. The Site-directed Mutation of Key Residues and the Analysis about Inhibitory Activity of Cassia obtusifolia Trypsin Inhibitor[J]. China Biotechnology, 2016, 36(10): 15-20.
[8] LI Yao-yao, BI Jing, WANG Yi-hong, QIN Yun-he, ZHANG Xue-lian. Lysine-322 Acetylation Negatively Regulates Isocitrate Lyase of Mycobacterium tuberculosis[J]. China Biotechnology, 2015, 35(6): 8-13.
[9] GAO Rui-ping, CHENG Long-bin, LI Zhen-qiu. A Simple and Rapid Single Primer PCR Method for Site-directed Mutagenesis[J]. China Biotechnology, 2015, 35(5): 61-65.
[10] XIA Ya-mu, LI Chen-chen. Genetic Modification and High Expression of Cyclodextrin Glycosyltransferase[J]. China Biotechnology, 2015, 35(2): 105-110.
[11] RUAN Jing-jun, YANG Yi, TANG Zi-zhong, CHEN Hui. Study on Tartary Buckwheat Trypsin Inhibitor Activity Sites by Using Site-directed Mutagenesis[J]. China Biotechnology, 2015, 35(12): 30-36.
[12] PEI Zhi-yong, HOU Xian-hui, GUI Xiao-ke, CHEN Yu-bao. Primer Spanner: A Web-based Platform to Design PCR Primers for High Efficient Site-directed Mutagenesis[J]. China Biotechnology, 2015, 35(10): 53-58.
[13] TIAN Shuo, YAO Wen-bin, XU Chen. Construction and Biological Assay of Integrated Interferon Mutant IIFN/165S[J]. China Biotechnology, 2013, 33(7): 8-12.
[14] DENG Hui, CHEN Sheng, CHEN Jian, WU Jing. Effect of T26P and A30P Site-Directed Mutagenesis on Thermostability and Activity of Glucose Isomerases from Thermobifida fusca[J]. China Biotechnology, 2013, 33(10): 67-72.
[15] WANG Hong-cui, ZHANG Jing, XU Qian, XU Li-na, WANG Nan-jie, SUN Xue-song. The Secondery Structure Study of Iron-binding Protein MtsA from Streptococcus pyogenes[J]. China Biotechnology, 2012, 32(12): 13-19.