Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (11): 117-122    DOI:
    
The Strategy of Citrinin Production Control in Monascus
LIU Chang,GE Feng,LIU Di-qiu,WANG Jian-ping,CHEN Chao-yin
1.Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650224, China
Download: HTML   PDF(586KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Pepole pay more attention to the medicinal value and health function of Monascus day by day,however,the existence of citrinin restricted the further development of Monascus products heavily. How to ruduce the content of citrinin is a problem need to be solved urgently. This paper briefly introduced the toxicity, the biosynthetic pathway, and the relative standards of citrinin in monascus. According to the research progress on citrinin, the strategies of citrinin control were described from the three aspects of fermentation technology, mutation breeding, and genetic engineering. The expectation about the direction of citrinin in the future was also discussed.



Key wordsCitrinin      Monascus      Fermentation process      mutation breeding      Genetic engineering     
Received: 05 June 2009      Published: 07 December 2009
ZTFLH:  Q815  
Cite this article:

LIU Chang. The Strategy of Citrinin Production Control in Monascus. China Biotechnology, 2009, 29(11): 117-122.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I11/117

[1]   Wong H C, Phili P E K. Production and Isolation of an Antibiotic from Monascus purpureus and its relationship to pigment production. Journal of Food Science, 1980, 46(2): 589~592
[2]   Blanc P J, Santerre A L, Goma G, et al. Characterization of monascidin A from Monascus as citrinin. International Journal of Food Microbiology, 1995, 27(23): 201~213
[3]   Lin Y L, Wang T H, Lee M H, et al. Biologically active components and nutraceuticalsin the Monascusfermented rice: a review. Applied Microbiology and Biotechnology, 2008, 77: 965~973
[4]   Hajjaj H, Goma G, Blanc P J, et al. Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Applied and Environmental Microbiology, 1999, 65(1): 311~314
[5]   Blanc P J, Loret M, Goma G, et al. Production of Citrinin by various species of Monascus. Biotechnology Letters, 1995, 17(3): 291~294
[6]   虞慧玲,聂小华, 许赣荣.低桔霉素红曲色素液态发酵工艺的研究. 中国酿造,2005, (9): 21~24 Yu H L, Nie X H, Xu G R. China Brewing, 2005, (9): 21~24
[7]   Hajjaj H, Goma G, Blanc P J, et al. Mediumchain fatty acids affect citrinin production in the filamentous fungus Monascus rubber. Applied and Environmental Microbiolog, 2000, 66(3): 1120~1125
[8]   杨晓暾, 胡文林, 谢凤娇, 等. 红曲红色素深层发酵桔霉素的控制. 中国食品添加剂, 2007, 增刊: 209~212 Yang Y T, Hu W L, Xie F J, et al. China Food Additives, 2007, Supplement: 209~212
[9]   Hajjaj H, Blanc P J, Goma G, et al. Improvement of red pigment/citrinin production ratio as a function of environmental conditions by Monascus rubber. Biotechnology and Bioengineering, 2000, 64(4): 497~501
[10]   Pereira D G, Tonso A, Kilikian B V. Effect of dissolved oxygen concentration on rrd pigment and citrinin production by Monascus purpureus ATCC 36928. Brazilian Journal of Chemical Engineering, 2008, 25(2): 247~253
[11]   Sandra F, Bilbao O, Beatriz V K. Effect of pH on citrinin and red pigments production by Monascus purpureus CCT3802. World Journal of Microbiology and Biotechnology, 2008, 24(2): 263~268
[12]   Lee C L, Hung H K, Wang J J, et al. Improving the ratio of monacolin K to citrinin production of Monascus purpureus NTU 568 under dioscorea medium through the mediation of pH value and ethanol addition. Journal of Agricultural and Food Chemistry, 2007, 55 (16): 6493~6502
[13]   陈蕴, 夏永军, 许赣荣, 等. 红曲液态发酵高产色素低产桔霉素的工艺条件. 食品与发酵工业, 2007, 33(10): 10~13 Chen Y, Xia Y J, Xu G R, et al. Food and Fermentation Industries, 2007, 33(10): 10~13
[14]   于洋,姚建铭,虞龙,等.N+离子注入选育色素产生菌Monascus 的研究. 中国科学院研究生院学报,2002, 19(4): 443~446 Yu Y, Yao J M, Yu L, et al. Journal of the Graduate School of the Chinese Academy of Sciences, 2002, 19(4): 443~446
[15]   印红, 谢申义, 章光明, 等. 利用返回式飞船选育优良红曲霉菌. 核农学报, 2004, 18(4): 297~299 Yin H, Xie S Y, Zhang G M, et al. Acta Agriculturae Nucleatae Sinica, 2004, 18(4): 297~299
[16]   王雅芬, 袁康培. 低产桔霉素红曲霉菌种的选育研究. 食品科学, 2003, 24(8): 93~96 Wang Y F, Yuan K P. Food Science, 2003, 24(8): 93~96
[17]   Wang J J, Lee C L , Pan T M. Modified mutation method for screening low citrininproducing strains of Monascus purpureus on rice culture. Journal of Agricultural and Food Chemistry, 2004, 52(23): 6977~6982
[18]   产竹华, 许赣荣. 不产桔霉素红曲诱变菌株的选育及色素发酵条件的优化. 食品与发酵工业, 2006, 32(11): 28~31 Chan Z H, Xu G R. Food and Fermentation Industries, 2006, 32(11): 28~31
[19]   Takeo S, Hiroshi K, Kanae S, et al. Synthase gene responsible for citrinin.biosynthes is in Monascus purpureus. Applied and Environmental Microbiology, 2005, 71(7): 3453~3457
[20]   Takeo S, Hiroshi K, Takuya N. Identification and in Vivo functional analysis by gene disruption of ctnR, an activator gene involved in citrinin biosynthesis in Monascus purpureus. Applied and Environmental Microbiology, 2007, 73(16): 5097~5103
[21]   Kanae S, Hiroshi K, Takeo S, et al. Construction of a citrinin gene cluster expression system in heterologous aspergillus oryzae. Journal of Bioscience and Bioengineering, 2008, 106(5): 466~472
[22]   Fu G M, Xu Y, Li Y P, et al. Construction of a replacement vector to disrupt pksCT gene for the mycotoxin citrinin biosynthesis in Monascus.aurantiacus and maintain food red pigment production. Asia Pacific Journal of Clinical Nutrition, 2007, 16 (Suppl 1): 137~142
[23]   Xiong Y H, Xu Y, Lai W H, et al. Cloning and sequence analysis of the fulllength cDNA of a noveI yp05 gene associated with citrinin production in Monascus aurantiacus. Biomedical and Environmental Sciences, 2007, 20(2): 135~140
[24]   赖卫华, 许杨, 熊勇华, 等. 应用抑制性消减杂交法筛选与红曲菌产桔霉素相关的基因. 食品科学, 2005, 26(3): 63~66 Lai W H, Xu Y, Xiong Y H, et al. Food Science, 2005, 26(3): 63~66
[25]   Xiong Y H, Xu Y, Lai W H, et al. Serial analysis of gene expression in Monascus aurantiacus producing citrinin. Biomedical and Environmental Sciences, 2005, 18(1): 9~14
[26]   丁月娣, 邵彦春, 许一平, 等. 红曲霉TDNA插入转化库中桔霉素突变子的筛选. 微生物学通报, 2006, 33(4): 52~57 Ding Y D, Shao Y C, Xu Y P, et al. Microbiology, 2006, 33(4): 52~57
[27]   付桂明, 许杨, 李燕萍, 等. 产毒红曲菌中生物合成桔霉素基因—pksCT基因的保守性分析. 食品科学, 2008, 29(3): 359~363 Fu G M, Xu Y, Li Y P, et al. Food Science, 2008, 29(3): 359~363
[28]   Chen Y P, Wang W Y, Yuan G F, et al. Exploring the distribution of citrinin biosynthesis related genes among Monascus species. Journal of Agricultural and Food Chemistry, 2008, 56 (24): 11767~11772
[1] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[2] CHEN Chun-lin,QIN Song,SONG Wan-lin,LIU Zhi-dan,LIU Zheng-yi. Progress on Biological Preparation of Alginate Oligosaccharides[J]. China Biotechnology, 2020, 40(10): 85-95.
[3] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[4] Shu-xia MA,Ling ZHANG,Jin-fei YAN,Song YOU. Study on the Synthesis of Polyunsaturated Fatty Acids by FattyAcid Synthase Pathway of Schizochytrium sp.[J]. China Biotechnology, 2018, 38(9): 27-34.
[5] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[6] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[7] GAO Jiao-jiao, YANG Shu-lin. Advances in Optimization of Hyaluronic Acid Production by Genetic Engineering Technology[J]. China Biotechnology, 2017, 37(8): 72-77.
[8] WANG De-hua, MA Yi, HAN Lei, XIAO Xing, LI Yan-wei, DANG Shi-ying, FAN Zhi-yong, WEN Tao, HONG An. Preparation of Novel Recombinant PACAP Derivative MPL-2 and Its Effect on Anti-type 2 Diabetes Mellitus[J]. China Biotechnology, 2017, 37(5): 59-65.
[9] CHEN Jing, KANG Ci-ming, LUO Wen-xin. Advance in Research on Antibody Half-Life Related Engineering[J]. China Biotechnology, 2017, 37(5): 87-96.
[10] GAN Chun-yang, LIU Ya, LUO Ying-ying, ZHANG Wen-lu, HUANG Ai-long, CAI Xue-fei, HU Jie-li. A Cloning Strategy Suitable for DNA Modification by Fragment Scanning[J]. China Biotechnology, 2016, 36(8): 55-63.
[11] LIU Ting-ting, LIANG Zi-qiang, LIANG Shi-ke, GUO Ji-xing, WANG Fang-hai. Research Advances of Producing Spider Silk by Biotechnology[J]. China Biotechnology, 2016, 36(5): 132-137.
[12] FANG Shi-xiong, MA Yi, SHEN Shu-tao, ZHAO Shao-jun, HONG An. Efficient Preparation of TNFα Derivatives TRSP10 and Preliminary Study of Its Inhibitory Effect on Prostate Cancer DU145 Cells[J]. China Biotechnology, 2015, 35(4): 11-16.
[13] WU Meng, LIU Zuo-hua, LIN Bao-zhong, LAN Guo-cheng, ZOU Xian-gang, GE Liang-peng. Recent Progress in Transgenic Pigs[J]. China Biotechnology, 2015, 35(3): 92-98.
[14] JIANG Yan-chao, JIANG Shi-yun, FU Feng-ming, HUANG Kai, KANG Xing-xin, XU Dan. Advance in Research on HA Biosynthesis and Gene Engineering[J]. China Biotechnology, 2015, 35(1): 104-110.
[15] ZHAO Guo-ling, TAO Xin-yi, WANG Feng-qing, WEI Dong-zhi. The Construction and Application of EchDA Genetic Engineering Bacteria[J]. China Biotechnology, 2015, 35(1): 67-74.