Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (11): 106-111    DOI:
    
Application of Lactic Acid Bacteria Vector pMG36e
DING Yin-yin1,MA Hui-qin2,ZUO Fang-lei 1,HAO Yan-ling1,CHEN Shang-wu1
1.College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
2.College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
Download: HTML   PDF(456KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Plasmid pMG36e, based on protease gene transcription and translation signals from Lactococcus lactis cremoris, is a typical artificial constitutive expression vector as a main expression system in Lactococcus. It has a strong promoter and has been used for expression of heterologous protein such as enzyme in a variety of bacteria. In recent years, it was used to investigate the mechanism of bacteriocin as an intermediate vector, to construct lactic acid bacteria genetic strains and develop oral vaccine, even in gene therapy study. pMG36e has been used so widely in multi-disciplinary applications, it becomes one of the most important plasmid in the lactic acid bacteria genetic engineering. In this paper, the basic plasmid composition, structure, and application of pMG36e in gene expression and food-grade vector construction were reviewed to provide reference for future research.



Key wordspMG36e      expression vector      food-grade vector      vectorLactic acid bacteria     
Received: 29 June 2009      Published: 07 December 2009
ZTFLH:  Q782  
Cite this article:

DING Yin-Yin, MA Hui-Qi, ZUO Fang-Lei, HAO Pan-Ling, CHEN Chang-Wu. Application of Lactic Acid Bacteria Vector pMG36e. China Biotechnology, 2009, 29(11): 106-111.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I11/106

[1]   De Vos W M. Gene expression systems for lactic acid bacteria. Current Opinion in Microbiology, 1999, 2 (3): 289~295
[2]   吕晓英,张朝武. 乳球菌基因克隆载体系统的研究近况. 现代预防医学, 2003, 30 (2): 222~225 Lv X Y, Zhang C W. Modern Preventive Medicin, 2003, 30 (2): 222~225
[3]   Van De Guchte M,Van Der Vossen J M B M,Kok J,et al. Construction of a lactococcal expression vector: Expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Applied and Environmental Microbiology, 1989, 55 (1): 224~228
[4]   向华,刘敬忠,胡维,等. 欧芹苯丙氨酸脱氨酶cDNA在乳酸乳球菌中的表达研究. 微生物学报, 1999,39 (3): 196~204 Xiang H,Liu J Z,Hu W, et al. Expression in Lactococcus Lactis of catalytically active phenylanine amminialyase from parsley. Acta Microbiologica Sinica, 1999, 39(3): 196~204
[5]   Van De Guchte M,Kodde J,Van Der Vossen J M B M,et al. Heterologous gene expression in Lactococcus lactis subsp. lactis: Synthesis, secretion, and processing of the Baccilius subtilis neutral protease. Applied and Environmental Microbiology, 1990, 56 (9): 2606~2611
[6]   向华,卫文仲,谭华荣,等. 人铜锌超氧化物歧化酶基因的克隆和在乳酸乳球菌中的表达. 生物工程学报. 2000, 16(1): 6~9 Xiang H, Wei W Z, Tan H R, ,et al. Chinese Journal of Biotechnology, 2000, 16(1): 6~9
[7]   Jeong D W,Lee J H,Kim K H,et al. A foodgrade expression/secretion vector for Lactococcus lactis that uses an αgalactosidase gene as a selection marker. Food Microbiology, 2006, 23 (5): 468~475
[8]   Van Der Vossen J M B M,Kodde J,Haandrikman A J,et al. Characterization of transcription initiation and termination signals of the proteinase genes of Lactococcus lactis Wg2 and enhancement of proteolysis in L. lactis. Applied and Environmental Microbiology, 1992, 58 (9): 3142~3149
[9]   Horinouchi S,Weisblum B. Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. Journal of Bacteriology, 1982, 150 (2): 804~814
[10]   Van Der Vossen J M,Van Der Lelie D,Venema G. Isolation and characterization of Streptococcus cremoris Wg2specific promoters. Applied and Environmental Microbiology, 1987, 53 (10): 2452~2457
[11]   Leenhouts K J, Tolner B, Bron S, et al. Nucleotide sequence and characterization of the broadhostrange lactococcal plasmid pWVO1. Plasmid, 1991, 26 (1): 55~66
[12]   Franke C M, Leenhouts K J, Haandrikman A J, et al. Topology of LcnD, a protein implicated in the transport of bacteriocins from Lactococcus lactis. Journal of Bacteriology, 1996, 178 (6): 1766~1769
[13]   Diep D B, Godager L, Brede D, et al. Data mining and characterization of a novel pediocinlike bacteriocin system from the genome of Pediococcus pentosaceus ATCC 25745. Microbiology, 2006, 152 (6): 1649~1659
[14]   Diep D B, Skaugen M, Salehian Z, et al. Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 (7): 2384~2389
[15]   Van Reenen C A, Van Zyl W H, Dicks L M T. Expression of the immunity protein of plantaricin 423, produced by Lactobacillus plantarum 423, and analysis of the plasmid encoding the bacteriocin. Applied and Environmental Microbiology, 2006, 72 (12): 7644~7651
[16]   Sun Z, Zhong J, Liang X, et al. Novel mechanism for nisin resistance via proteolytic degradation of nisin by the nisin resistance protein NSR. Antimicrobial Agents and Chemotherapy, 2009, 53 (5): 1964~1973
[17]   Fernández M, SánchezHidalgo M, GarcíaQuintáns N, et al. Processing of as48ABC RNA in AS48 enterocin production by Enterococcus faecalis. Journal of Bacteriology, 2008, 190 (1): 240~250
[18]   Brurberg M B, Haandrikman A J, Leenhouts K J, et al. Expression of a chitinase gene from Serratia marcescens in Lactococcus lactis and Lactobacillus plantarum. Applied Microbiology and Biotechnology, 1994, 42 (1): 108~115
[19]   霍丹群,范守城,张云茹,等. phyA基因的克隆及其新型表达载体的构建. 中国兽医科技, 2004, 34(3): 26~30 Huo D Q, Fan S C, Zhang Y R, et al.Chinese Journal of Veterinary Science and Technology, 2004, 34(3): 26~30
[20]   Xiang H, Wei W, Zhang Y, et al. Human glutathioneStransferase: Cloning and expression in Lactococcus Lactis. Biomolecular Engineering, 2000, 16 (6): 207~209
[21]   Varma N R S, Raha A R, Ross E, et al. Inducible expression of green fluorescence protein in Lactococcus lactis. Current Science, 2004, 87 (9): 1185~1187
[22]   Gobbetti M, Corsetti A, Morelli L, et al. Expression of αamylase gene from Bacillus stearothermophilus in Lactobacillus sanFrancisco. Biotechnology Letters, 1996, 18 (8): 969~974
[23]   Raha A R, Chang L Y, Sipat A, et al. Expression of a thermostable xylanase gene from Bacillus coagulans ST6 in Lactococcus lactis. Letters in Applied Microbiology, 2006, 42 (3): 210~214
[24]   陆东林,张瑞梅. 功能性乳制品开发现状和前景. 新疆畜牧业, 2008, (4): 50~52 Lu D L, Zhang R M. Xinjiang Livestock Industry, 2008, (4): 50~52
[25]   Roy D G, Klaenhammer T R, Hassan H M. Cloning and expression of the manganese superoxide dismutase gene of Escherichia coli in Lactococcus lactis and Lactobacillus gasseri. Molecular and General Genetics. 1993, 239 (1,2): 33~40
[26]   余保宁. 超氧化物歧化酶益生菌发酵酸奶的研究. 现代食品科技, 2007, 23 (4): 42~46 Yu B N. Modern Food Science and Technology, 2007, 23 (4): 42~46
[27]   黄勇,张德纯. 锰超氧化物歧化酶基因的克隆和在保加利亚乳杆菌中的表达. 食品科学, 2005, 26(5): 92~95 Huang Y, Zhang D C. Food Science, 2005, 26(5): 92~95
[28]   钟燕. 益生菌与乳糖不耐受研究进展. 国外医学(卫生学分册), 2003, 30 (2): 101~105 Zhong Y. Foreign Medical Sciences hygienics, 2003, 30 (2): 101~105
[29]   Wang C, Zhang C W, Liu H C, et al. Nonfusion and fusion expression of βgalactosidase from Lactobacillus bulgaricus in Lactococcus lactis. Biomedical and Environmental Sciences, 2008, 21 (5): 389~397
[30]   Wang C, Liu H C, Pei X F, et al. Construction and property study of recombinant Lactococcus lactis with nonfusion expressing of βgalactosidase. Journal of Sichuan University (Medical Science Edition), 2009, 40 (1): 29~32
[31]   Wang C, Zhang C W, Yu Q, et al. βgalactosidase gene from Lactobacillus delbrueckii subsp. bulgaricus gets nonfusion expression in Escherichia coli. Journal of Sichuan University (Medical Science Edition), 2008, 39 (4): 544~546
[32]   向华,张亦清,卫文仲,等. 人谷胱甘肽硫转移酶A1在乳酸乳球菌中的表达及活性研究. 微生物学报, 2000, 40(2): 130~138 Xiang H, XhangY Q, Wei W Z, et al. Acta Microbiologica Sinica, 2000, 40(2): 130~138
[33]   蒋爱民,杨公明,李元瑞,等. lux基因发光乳球菌构建方法的研究. 中国食品学报, 2003, 3(3): 19~23 Jiang A M,Yang G M, Li Y R, et al. Study on construction method of luminescent Lactoccus. Journal of Chinese Institute of Food Science and Technology, 2003, 3(3): 19~23
[34]   Jiang A, Wang H, Lee N, et al. Biological characteristics of luminescent Lactococcus lactis transformed with lux genes. Food Research International, 2006, 39 (4): 426~432
[35]   Dup lessis E, Theron J, Berger E, et al. Evaluation of the Staphylococcus aureus class C nonspecific acid phosphatase (SapS) as a reporter for gene expression and protein secretion in gramnegative and grampositive bacteria. Applied and Environmental Microbiology, 2007, 73 (22): 7232~7239
[36]   胡维,刘敬忠,向华,等. 苯丙氨酸脱氨酶cDNA在大肠杆菌中的克隆与表达及酶法合成L苯丙氨酸. 微生物学杂志, 2000, 20(3): 30~32 Hu W, Liu J Z, Xiang H, et al. Journal of Microbiology, 2000, 20(3): 30~32
[37]   贾兴元,刘敬忠,向华,等. 高苯丙氨酸血症大鼠基因疗法的实验研究. 中华医学杂志, 2000, (6): 464~467 Jia X Y, Liu J Z, Xiang H, et al. National Medical Journal of China, 2000, (6): 464~467
[38]   张晶,刘敬忠,谭淑珍,等. 苯丙氨酸脱氨酶在乳酸乳球菌NICE系统的高效表达及其实验动物研究. 生物工程学报, 2002, 18 (6): 713~717 Zhang J, Liu J Z, Tan S Z, et al. Chinese Journal of Biotechnology, 2002, 18 (6): 713~717
[39]   Kim S J, Jun D Y, Yang C H, et al. Expression of Helicobacter pylori cag12 gene in Lactococcus lactis MG1363 and its oral administration to induce systemic antiCag12 immune response in mice. Applied Microbiology and Biotechnology, 2006, 72 (3): 462~470
[40]   Zhang X J,Duan G,Zhang R,et al. Optimized expression of helicobacter pylori ureB gene in the lactococcus lactis nisincontrolled gene expression (NICE) system and experimental study of its immunoreactivity. Current Microbiology, 2009, 58 (4): 308~314
[41]   De Vos W M. Safe and sustainable systems for foodgrade fermentations by genetically modified lactic acid bacteria. International Dairy Journal, 1999, 9 (1): 3~10
[42]   孙强正,徐建国. 乳酸乳球菌食品级表达载体的研究进展. 中国微生态学杂志, 2006, 18(3): 260~封三 Sun Q Z, Xu J G. Chinese journal of microecology, 2006, 18 (3): 260~inside back cover
[43]   Mccormick J K, Worobo R W, Stiles M E. Expression of the antimicrobial peptide carnobacteriocin B2 by a signal peptidedependent general secretory pathway. Applied and Environmental Microbiology, 1996, 62 (11): 4095~4099
[44]   赵玲艳,邓放明,杨细平,等. 生物防腐剂——乳酸菌素. 中国食物与营养, 2005, (2): 27~29 Zhao L Y, Deng F M, Yang X P, et al. Food and Nutrition in China, 2005, (2): 27~29
[45]   孙强正,熊衍文,叶长芸,等. 食品级分泌表达载体的构建及报告蛋白在乳酸乳球菌中的表达. 微生物学报, 2008, 48 (3): 293~298
[1] JING Hui-yuan,DUAN Er-zhen,DONG Wang. In Vitro Transcribed Self-amplifying mRNA Vaccines[J]. China Biotechnology, 2020, 40(12): 25-30.
[2] ZONG Xin, HU Wang-yang, WANG Yi-zhen. Construction and Evaluation of Porcine Myeloid Differentiation Factor 88(MyD88) shRNA Interference Vector[J]. China Biotechnology, 2015, 35(7): 1-7.
[3] WANG Xiao-yan, CHEN Na-zi, AI Jun, ZHAO Yang, WU Mei-yu, HUANG Jin-zhi, JIANG Chao, LI Xiao-kun. Expression and Purification of Biological-active Recombinant HBV Precore Protein-Mouse IgG Fc Based on Baculovirus Expression Vector System[J]. China Biotechnology, 2015, 35(4): 42-47.
[4] FU Xiao-meng, KONG Ling-cong, PEI Zhi-hua, LIU Shu-ming, MA Hong-xia. Advance in the Research of Antimicrobial Peptides Gene Expression in Pichia pastor[J]. China Biotechnology, 2015, 35(10): 86-90.
[5] WANG Jin-sheng, JIANG Hao-wu, ZHANG Jin-xia, PAN Lei, ZHAO Feng-zhi, YU Yun-fei, CAI Ya-xiong, DENG Ning. Optimized Expression of a Mouse-human Chimeric Antibody Production in HEK 293T Cells Against Human FGF2[J]. China Biotechnology, 2014, 34(5): 14-22.
[6] LI Guo-kun, GAO Xiang-dong, XU Chen. Advances on Mammalian Cell Expression System[J]. China Biotechnology, 2014, 34(1): 95-100.
[7] ZHU Xiao-jing, JIANG Chao, XUE Ping, WANG Xiao-yan, XU Dan, NAN Jia, AI Jun, LI Xiao-kun. Expression and Purification of Biological-active Recombinant Human Keratinocyte Growth Factor-1 Base on Baculovirus Expression Vector System[J]. China Biotechnology, 2013, 33(3): 47-53.
[8] GONG Yuan-yong, Feng, Yong-kun, GUO Shu-qiao, SHU Hong-mei, NI Wan-chao, LIU Lai-hua. Construction and Verification of an Plant Expression Vector pCAMBIA2300-35S-GUS-CaMVterm[J]. China Biotechnology, 2013, 33(3): 86-91.
[9] ZHU Jun-ping, LI Gai-rui, DU Qi-ke, GUO Zhong-min, LU Jia-hai. Fusion Expression and Purification of Human Beta Defensin-3 in E.coli[J]. China Biotechnology, 2013, 33(11): 68-74.
[10] JIN Lei, ZHAO Wen-xiu, MA Lan. A Novel Method for Constructing Small Fragment Gene of Expression Vector[J]. China Biotechnology, 2012, 32(6): 57-63.
[11] WANG Ping, JIANG Mu-lan, ZHANG Yin-bo, WAN Xia, LIANG Zhuo, GONG Yang-min. Construction of a Novel Expression Vector with the Promoter of Phosphoglycerate Kinase Gene and Its Utilization of Heterogenous Gene Expression in Trichosporon fermentans[J]. China Biotechnology, 2012, 32(03): 39-46.
[12] YU Yong-sheng, ZHANG Li-chun, LUO Xiao-tong, LIU Zheng, ZHANG Shu-min. Construction and Verification of Skeletal Muscle Specific Expression Vector of Caenorhabditis Elegans ω-3 Fatty Acid Desaturase Gene[J]. China Biotechnology, 2011, 31(7): 27-31.
[13] HE Zhang-hua, WANG Yang, ZHAO Jun, LIU Xiao-jie, ZHANG Li-hua, WANG Dong, SHI Ming-lei, HUANG Fen, YOU Ping, ZHAO Zhi-hu. Construction of a Vector Suitable for the Tandem Coexpression of Multiple Genes by a Single Plasmid[J]. China Biotechnology, 2011, 31(01): 40-45.
[14] HUANG Dun-Li, LIU Ta-Bei, WANG Gui-Hua, LI Xian-Yong. cDNA Cloning, Bioinformatics Analysis and Construction of  Overexpression Vector of High-chlorophyll Rice Gene DET1[J]. China Biotechnology, 2010, 30(04): 60-64.
[15] . Cloning of ginseng βAS gene and the construction of its antisense[J]. China Biotechnology, 2008, 28(4): 74-77.