Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (08): 8-13    DOI:
    
An Experimental Study on Using the Porous Composite of Nanohydroxyapatite and Polymide as Scaffold Compound with rhBMP2 to Repairing Bone Defect on Rabbits
MENG Chun-yang1 JIANG Dian-ming2 AN Hong2 HUANG Wei2 ZUO Yi3 LI Yu-bao3
1.Jining Medical College,Jining272113,China
2. The First Affiliated Hospital of Chong Qing University of Medical Sciences, Chongqing400016,China
3. Analytical and Testing Center,Sicuan University,Chengdu610064,China
Download: HTML   PDF(721KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

AbstractObjective:To evaluate the ability of the porous nanohydroapatite crystals and polyamide composite (nHA/PA66) as scaffold  compound with rhBMP2 to repairing bone defect, study the methods which fast the artificial bone with host bone healing in vivo.Methods: The animal models of bilaterial radius bone defect created with surgery in the New Zealand white rabbits, and were implanted with nHA/PA66/ rhBMP2 as experimental group, implanted nHA/PA66 as experimental control group, and no implant as blank control group. The effect were observed by gross Xray and histopathlogical examination and in situ hybridization at1, 2, 4, 8, 12W after operation, and use the spss12.0 and OneWayANOVA system to analysis. Results: The defects of experimental group and experimental control group were repair perfectly, The blank control group hadn't repaired after 12weeks, the speed of bonehealing of nHA/PA66/ rhBMP2 group were faster than nHA/PA66 group in the early time. The data of  in situ hybridization analysis had  statistically significant difference between nHA/PA66/ rhBMP2  and nHA/PA66 group in two weeks, but the data had no statistically significant difference between nHA/PA66/ rhBMP2 and nHA/PA66 group in four weeks . Conclusion:The results show porous scaffold of nHA/PA66 compound with rhBMP2 can enhance the ability of the artificial bone with host bone healing in the early time in vivo.



Key wordsNano-hydroxyapatite      Polyamide      Scaffold      rhBMP2      Bone defect     
Received: 05 January 2009      Published: 28 July 2009
ZTFLH:  Q819  
Cite this article:

MENG Chun-Yang, JIANG Dian-Meng, AN Hong, HUANG Wei, ZUO Yi, LI Yu-Bao. An Experimental Study on Using the Porous Composite of Nanohydroxyapatite and Polymide as Scaffold Compound with rhBMP2 to Repairing Bone Defect on Rabbits. China Biotechnology, 2009, 29(08): 8-13.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I08/8

[1]   Wen Jie,Li Yubao,Chun Wenqun, et al. A study on nanocomposite of hydroxyapatite and polymide. J Mater Sci, 2003,38:3303~3306
[2]   孟纯阳,安洪 ,蒋电明,等. 新型纳米骨重建和修复材料羟基磷灰石/聚酰胺体内植入的生物相容性及安全性.中国临床康复, 2004, 29(8):6330~6333
   Meng C Y,An H,Jiang D M,et al.Chin J Clin Rehabi,2004, 29(8):6330~6333
[3]   蒋电明, 权正学, 欧云生, 等. 纳米羟基磷灰石/聚酰胺66复合生物活性人工椎体在胸腰椎爆裂骨折中的应用.中华创伤杂志,2006,12(22):884~887
   Jaing D M,Quan Z X,Ou Y S,et al.Chin J Trauma, 2006,12(22):884~887
[4]   蒋电明, 权正学, 黄伟,等. 纳米羟基磷灰石/聚酰胺66复合生物活性人工椎板的初步临床应用.中国修复重建外科杂志,2007,21(5):441~444
   Jaing D M,Quan Z X,Huang W,et al.Chin J Repara & Reconstr Surg, 2007,21(5):441~444
[5]   孟纯阳 ,安洪, 蒋电明,等. 多孔纳米羟基磷灰石/聚酰胺(nHA/PA66)人工骨修复兔桡骨缺损的实验研究 .中华创伤杂志,2005,21(3):187~201
   Meng C Y,An H,Jiang D M,et al.Chin J Trauma, 2005,21(3):187~201
[6]   Ripamonti U, Tasker J R. Advances in biotechnology for tissue engineering of bone. Curr Pharm Biotechnol,2000,1(1):47~55
[7]   Jones J R, Ahir S, Hench L L. Largescale production of 3D bioactive glass macroporous scaffolds for tissue engineering. J Sol Gel Sci &Tech,2004,29:179~188
[8]   Wang X J,Li Y B.Development of biomimetic composites of nanohydroxyapatite and polyamide as a bone substitute.Chin J Biomed Eng,2001,10:199~203
[9]   Wei Jie ,Li Yubao .Tissue engineering scaffold material of nanoapatite crystals and polyamide composite .European Polymer Journal,2004,40:509~515
[10]   孟纯阳,安洪,蒋电明. 纳米羟基磷灰石/聚酰胺的细胞相容性研究.中华创伤骨科杂志,2005,7(7):749~752
   Meng C Y,An H,Jiang D M,et al.Chin J Orthop Trauma,2005,7(7):749~752
[11]   Hughsf J, Collyer J, Stanfield M,et al, The effects of bone morphogenetic protei2,4and6 on differentiation of rat osteoblast cells in vitro. Endocrinology, 1995,136 (6):2671
[12]   Rileye A, Lane J M,Urist M R,et al. Bone morphogenetic protein2:Biology and application. Clinic Orthop,1996,324:39
[13]   Kaffagirit Yamaguch A. Bone morphogenetic protein2 converts the differentiation pathway of C2C12 myoblast into theosteoblast lineage. J Cell Biol,1994,127:1755
[14]   Yang L J, Jin Y.Immunohistochemical observations on bone morphogenetic protein in normal and abnormal conditions. Clin Othop, 1990, 257: 249~256
[1] YU Xing-ge,LIN Kai-li. The Application of Biomaterials Based on Natural Hydrogels in Bone Tissue Engineering[J]. China Biotechnology, 2020, 40(5): 69-77.
[2] WANG Yuan-dou,SU Feng,LI Su-ming. Research Progress of Photocrosslinked Hydrogel in Tissue Engineering[J]. China Biotechnology, 2020, 40(4): 91-96.
[3] Hui-rong WU,Zhao-hui WEN. Application of Chitosan in Nerve Tissue Engineering[J]. China Biotechnology, 2019, 39(6): 73-77.
[4] Yue ZHAO,Hao WU,Jian-jun QIAO. Research on the Regulatory Mechanisms of Bacterial Cell Wall Growth[J]. China Biotechnology, 2018, 38(8): 92-99.
[5] Ling WANG,Yang WU,Sheng ZHANG,Hao QI. Bioengineering Application of Ferritin[J]. China Biotechnology, 2018, 38(6): 77-85.
[6] XI Lai-shun,YUN Peng,WANG Yuan-dou,ZHANG Guan-hong,XING Quan-sheng,CHEN Yang-sheng,SU Feng. Application of Shape Memory Polymer in Tissue Engineering[J]. China Biotechnology, 2018, 38(12): 76-81.
[7] XU Zhu, ZHUGE Qi-chuan, HUANG Li-jie. Advances in Stem Cell 3D Scaffolds[J]. China Biotechnology, 2017, 37(9): 112-117.
[8] LI Da-wei, HE Jin, HE Feng-li, LIU Ya-li, DENG Xu-dong, YE Ya-jing, YIN Da-chuan. Advances in Application of Silk Fibroin/Chitosan Composite in Tissue Engineering[J]. China Biotechnology, 2017, 37(10): 111-117.
[9] ZHANG Qing-fang, LIU Ru-ming, XIAO Jian-hui. Application of Hyaluronic Acid on the Cartilage Differentiation of Mesenchymal Stem Cells[J]. China Biotechnology, 2016, 36(6): 92-99.
[10] ZHANG Xiao-min, WANG Shi-yong, LI Gen, ZHAO Hong-bin. The Study of Osteogenic Induction of Type Ⅰ Collagen /Poly(caprolactone)/Attapulgite Composite Scaffold Materials in Vitro[J]. China Biotechnology, 2016, 36(5): 27-33.
[11] LI Geng, LIU Xiao-zhi, WANG Zhi-ming, GAO Jian. Progress in the Application of Non-immunoglobulin Scaffolds[J]. China Biotechnology, 2016, 36(2): 90-95.
[12] HUANG Wei-feng, CHENG Peng, JIANG Ping. A Comparative Study of Three Ways of Acellular Process on Small Intestinal Submucosa's Biocompatibility and Immunogenicity[J]. China Biotechnology, 2015, 35(6): 54-60.
[13] ZHANG Zhi-qiang, HUANG Xiang-hua, ZHAO Lin-yuan. The Effects of Microenvironment on Cells and The Application of Bionics in Tissue Engineering Scaffolds[J]. China Biotechnology, 2014, 34(4): 101-109.
[14] YAO Mei, CUI Ying, HU Jing, LI Jun-xia, WANG Yu. Repairing Larynx Cartilage Defects with Prefabricated PLAG Scaffold Compounded with BMSCs Cell Sheets Transfected by GDF5[J]. China Biotechnology, 2014, 34(3): 18-25.
[15] DONG Mao-sheng, WANG Dian-liang. Biological Scaffold Materials[J]. China Biotechnology, 2014, 34(06): 122-127.