Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (06): 85-90    DOI:
    
Optimal Model Design for High Production of Phenazine-1-Caboxylic Acid (PCA)
Download: HTML   PDF(628KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Model on secondary metabolite phenazine-1-carboxylic acid (PCA) fermentation nutrition conditions of gacA inactivate mutant Pseudomonas sp. M18G was constructed by Plackett-Burman design (PB) and Response Surface Method (RSM). In PB design four key components selected from 12 different factors have shown to play an important role for promoting PCA production. Center Composite Design (CCD) was adopted to establish a fermentation model for the four nutrition components using RSM. The optimal concentration of the four components based on analysis of regression equation were determined that soybean meal 33.4g/L , glucose 12.7g/L, soy peptone10.9g/L, ethanol13.8g/L, and the highest PCA production could reached 1.89g/L after 60h fermentation and the yield increased to 6 fold over that before optimization. The contour graphs depicted interactions of the two nutrition components showed that soybean meal and ethanol played an even more crucial role for the highest production of PCA in fermentation.



Key wordsPhenazine-1-carboxylic acid      M18G      Response Surface Method      Fermentation model     
Received: 04 March 2009      Published: 02 July 2009
Cite this article:

LI Ya-Gan, JIANG Hai-Xia, ZHANG Xue-Hong, HU Yu-Quan. Optimal Model Design for High Production of Phenazine-1-Caboxylic Acid (PCA). China Biotechnology, 2009, 29(06): 85-90.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I06/85

[1] Mavrodi D V, Blankenfeldt W ,Thomashow L S. Phenazine compounds in fluorescent pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol, 2006, 44 (5): 417~445 [2] Laursen J B, Nielsen J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev, 2004, 104 (3):1663~1685 [3] Lau G W, Hassett D J, Ran H, et al. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med, 2004, 10 (12): 599~606 [4] Mavrodi D V, Bonsall R F, Delaney S M, et al. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol, 2001, 183 (21): 6454~6465 [5] Hu H B, Yu Q X, Feng C, et al. Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine 1-carboxylic acid and pyoluteorin. J Microbiol Biotechn, 2005, 15 (1): 86~90 [6] 许煜泉. 绿色微生物源杀菌剂申嗪霉素(M18). 精细和专用品化学, 2004, 20(12): 8~10 Xu Y Q.Fine and Specialty Chemicals, 2004, 20 (12): 8~10 [7] Ge Y, Huang X, Wang S, et al. Phenazine-1-carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18. FEMS Microbiol Lett, 2004, 237 (7): 41~47 [8] Khambhaty Y, Mody K, Jha B, et al. Statistical optimization of medium components for kappa-carrageenase production by Pseudomonas elongata. Enzyme Microb Tech, 2007, 40(4): 813~822 [9] Kennedy M, Krouse D. Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biot, 1999, 23 (6): 456~475 [10] Gheshlaghi R, Scharer J M, Moo-Young M, et al. Medium optimization for hen egg white lysozyme production by recombinant Aspergillus niger using statistical methods. Biotechnol Bioeng , 2 005, 90 (6): 754~760 [11] Duffy B K, Defago G. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environl Microb, 1999, 65 (6): 2429~2438 [12] Raaijmakers J M, Vlami M, de Souza J T. Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek, 2002, 81(11): 537~547 [13] Shtark O, Shaposhnikov A I, Kravchenko L V. The production of antifungal metabolites by Pseudomonas chlororaphis grown on different nutrient sources. Mikrobiologiia , 2003, 72 (5): 645~650 [14] Xiao Z J, Liu P H, Qin J Y, et al. Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Appl Microbiol Biotechnol , 2007, 74(1): 61~68 [15] Slininger P J, Shea-Wilbur M A. Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2-79. Appl Microbiol Biotechnol, 1995, 43 (5): 794~800 [16] van Rij E T, Wesselink M, Chin-A-Woeng T F C, et al. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant Microbe In, 2004, 17(5): 557~566
[1] ZHANG Xu-ning, QUAN Chun-shan, LIAO Ying-ling, LIU Ke-huan, XIONG Wen, FAN Sheng-di. Expression,Purification and Identification of AgrA, a Response Regulator Protein of Two-component Signal Transduction System in Staphylococcus aureus[J]. China Biotechnology, 2015, 35(5): 32-40.
[2] LI Liang, WANG Ze-jian, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang. Mutagenesis Breeding and Optimization of Cephalosporin C by Cephalosporium acremonium[J]. China Biotechnology, 2014, 34(8): 61-66.
[3] HAN Qi-can, HUO Guang-hua, LUO Gui-xiang. Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens[J]. China Biotechnology, 2014, 34(5): 66-74.
[4] ZHANG Qi, NING Xi-bin, ZHANG Ji-lun. Optimization of Cultivation Conditions for Protease Production from Marine Bacteria by Response Surface Methodology[J]. China Biotechnology, 2013, 33(8): 105-110.
[5] WANG Dan, ZHENG Hong-li, JI Xiao-jun, GAO Zhen. Optimization the Accumulation of Astaxanthin in Chlorella Zofingiensis Using Response Surface Methodology[J]. China Biotechnology, 2013, 33(7): 71-81.
[6] ZHAO Fang-long, ZHU Ling-qing, YANG Xue, LU Wen-yu. Medium Optimization for Rhamnolipids Production by Pseudomonas aeruginosa O-2-2 and LC-MS/MS Analysis[J]. China Biotechnology, 2013, 33(6): 79-85.
[7] WU Ying-chun, MA Qin-qin, DING Xian-feng, ZHANG Kai, LIU Li-li, GUO Jiang-feng. Expression of XRN1 Protein and Optimization of Fermentation Medium with Response Surface Method[J]. China Biotechnology, 2013, 33(4): 121-128.
[8] SUN Guo-xia, WANG Jun, DING Wei-tong, WANG Kai-xuan, WU Fu-an. Process Optimization of Selectively Enzymatic Synthesis of Isoquercitrin Using Ionic Liquid[J]. China Biotechnology, 2013, 33(3): 130-134.
[9] WU Wei-ping, CHEN Jie, LI Ya-qian, CHEN Li-jie, DUAN Yu-xi. Optimization of Fermentation Process for Chlamydospores of Trichoderma asperellum by Response Surface Methodology[J]. China Biotechnology, 2013, 33(12): 97-104.
[10] ZHANG Wen, ZHANG Shu-qing, MA Xiao-tong, HE Cui-cui. The Optimization Research of Fermentation Medium of γ-Polyglutamic Acid(γ-PGA) Produced by Bacillus natto[J]. China Biotechnology, 2013, 33(11): 44-50.
[11] LI Rui-rui, LIU Dian-lei, YANG Qing, HAO Qiong, JIANG Kai-kai, LI Pi-wu. Optimization of Fermentation Conditions for Glucose Oxidase Production by Aspergillus niger using Response Surface Method[J]. China Biotechnology, 2013, 33(10): 111-116.
[12] CHEN Jie, WEI Hong-gang, LUO Yuan-chan, ZHANG Dao-jing, LI Shu-lan, TIAN Li, LI Yuan-guang. Medium Optimization for the Production of New Antifungl Cyclic Lipopeptide Marinhysin A by Bacillus Marinus B-9987[J]. China Biotechnology, 2013, 33(1): 84-89.
[13] CHEN Jie-mei, XU Cong-cong, CHANG Lei, LIU Yong-ping, MIAO Bing-xuan. Study on Optimization of Soybean Meal Solid-state Fermentation Process for Producing Soybean Antioxidative Peptide by Response Surface Methodology[J]. China Biotechnology, 2012, 32(12): 59-65.
[14] YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun. Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology[J]. China Biotechnology, 2012, 32(09): 70-75.
[15] AI Zuo-zuo, YAN Ri-ming, YUAN Jin-yun, ZHANG Zhi-bin, ZHU Du. Optimization of Single Cell Oil Produced from Cassava Starch by Response Surface Methodology[J]. China Biotechnology, 2012, 32(07): 66-72.