Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (06): 113-119    DOI:
    
Applications Progress of DNA Microarray in Lactic Acid Bacteria
Download: HTML   PDF(484KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

DNA microarray technology emerged since 1990s allows a parallel analysis for thousands of genes in a single experiment. With the many strain's whole genome sequenceing, DNA microarray technology as a primary high-throughput tool has been widely applicated in monitoring of gene expression patterns, such as gene function prediction, detection of gene mutations, polymorphism analysis and so on. More attention has been taken on the application of gene chip technology in the research of Lactic Acid Bacteria(LAB), as for several LAB strains genome sequencing completed and a lots of sequences of EST, 16S/16S-23S rDNA obtained. The basic principle of the gene chip and the application progress of DNA microarray in identification and expression analysis of LAB were introduced in this paper, which would provide reference for further application and exploitation of LAB DNA microarray.



Received: 04 January 2009      Published: 02 July 2009
ZTFLH:  Q819  
Cite this article:

. Applications Progress of DNA Microarray in Lactic Acid Bacteria. China Biotechnology, 2009, 29(06): 113-119.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I06/113

[1] Kricka L J. Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century. Clin Chim Acta, 2001, 307(12): 219~223 [2] Xie Y, Chou L S, Cutler A,et al. DNA Macroarray profiling of Lactococcus lactis subsp.lactis IL1403 gene expression during environmental stresses. Appl Environ Microbiol, 2004, 70(11): 6738~6747 [3] Lemieux B, Aharoni A, Schena M. Overview of DNA chi Ptechnology. Molecular Breeding, 1998, 4: 277~289 [4] Kane M D, Jatkoe T A, Stumpf C R, et al. Assessment of the sensitivity and specificity of oligonucleotide(50mer) microarrays. Nucleic Acids Res, 2000, 28: 4552~4557 [5] Wang Quan, Wang Min, Kong Fanrong, et al. Development of a DNA microarray to identify the Streptococcus pneumoniae serotypes contained in the 23valent pneumococcal polysaccharide vaccine and closely related serotypes. J Microbiol Methods, 2007, 68: 128~136 [6] Whitehead K, Versalovic J, Roos S,et al. Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol, 2008, 5:1812~1819 [7] 李瑶. 基因芯片与功能基因组. 北京: 化学工业出版社, 2004. 28~49 Li Y. Genchi Pand Functional Genomics. Biejing. Chemical Industry Press,2004. 28~49 [8] Hughes T R, Mao M, Jones A R, et al. Expression profiling using microarrays fabricated by an inkjet oligonucleotide synthesizer. Nat Biotechnol, 2001, 19: 342~347 [9] Wang R F, Beggs M L, Erickson B D,et al. DNA microarray analysis of predominant human intestinal bacteria in fecal samples. Mol Cell Probes, 2004,18: 223~234 [10] 李瑶. 基因芯片技术——解码生命. 北京: 化学工业出版社,2004.54~58 Li Y. Gene Chip Technology. Beijing:Chemical Industry Press,2004. 54~58 [11] Pieterse B, Leer R J,Schuren F H J,et al. Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology, 2005,151: 3881~3894 [12] Barrangou R, AzcaratePeril M A, Duong T,et al. Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proc Natl Acad Sci, USA, 2006, 103(10): 3816~3821 [13] Sturme M H, Nakayama J, Molenaar D, et al. An agrlike twocomponent regulatory system in Lactobacillus plantarum is involved in production of a novel cyclic peptide and regulation of adherence. J Bacterial, 2005, 187: 5224~5235 [14] Saulnier D M A, Molenaar D, De Vos W M, et al. Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays, Appl Environ Microbiol, 2007, 73: 1753~1765 [15] Begley M, Gahan C G, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev,2005, 29: 625~651 [16] Bron PA, Molenaar D, De Vos W M, et al. DNA microarraybased identification of bileresponsive genes in Lactobacillus plantarum. J Appl Microbiol, 2006, 100: 728~738 [17] 乌日娜,武俊瑞,孟和,等.乳酸菌酸胁迫反应机制研究进展.微生物学杂志,2007,27(2): 62~67 Wu R N , Wu J R, Meng H , et al.Journal of Microbiology.2007, 27(2): 62~67 [18] Pfeiler E A, AzcaratePeril M A, Klaenhammer T R. et al. Characterization of a novel bileinducible operon encoding a twocomponent regulatory system in Lactobacillus acidophilus. J Bacteriol, 2007, 189: 4624~4634 [19] Chaussee M S, Sylva G L, Sturdevant D E,et al. Rgg influences the expression of multiple regulatory loci to coregulate virulence factor expression in Streptococcus pyogenes. Infect Immun, 2002, 70: 762~ 770 [20] AzcaratePeril M A, McAuliffe O, Altermann E, et al. Microarray analysis of a twocomponent regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl Environ Microbiol, 2005, 71(10): 5794~5804 [21] Vlieg J V H, Felis G, Wels M, et al. Exploring genomic diversity of Lactococcus lactis by comparative genome hybridisation with multistrain DNA microarrays. J Bacterial, 2007, 131(2):1~2 [22] Molenaar D,Bringel F,Schuren F H,et al. Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol, 2005, 187: 6119~6127 [23] Goldmann O, von KockritzBlickwede M, Holtje C.et al. Transcriptome analysis of murine macrophages in response to infection with Streptococcus pyogenes reveals an unusual activation program. Infect Immun, 2007, 75: 4148~4157 [24] Chizhikov V, Rasooly A, Chumakov K,et al. Microarray analysis of microbial virulence factors. Appl Environ Microbiol, 2001, 67(7): 3258~3263 [25] Duplessis M,Russell W M,Romero D A.et al. Global gene expression analysis of two Streptococcus thermophilus bacteriophages using DNA microarray. Virology, 2005,340: 192~208 [26] Davignon L,Walter E A, Mueller K M,et al.Use of resequencing oligonucleotide microarrays for identification of Streptococcus pyogenes and associated antibiotic resistance determinants.J Clin Microbiol, 2005,43(11): 5690~5695 [27] 张和平,张七斤,任贵强,等.乳酸杆菌对攻毒小鼠的保护作用和对肠道菌群的影响.微生物学通报, 2007,3(34):447~450 Zhang H P, Zhang Q J, Ren G Q. et al. The antagonism of Lactobacillus casei Zhang to pathogenic Escherichia coli in mice and the influence on the microbial population in gut.Microbiology,2007,3(34):447~450 [28] Lehner A, Loy A, Behr T, et al. Oligonucleotide microarray for identification of Enterococcus species. FEMS Microbiology Letters,2005,246:133~142 [29] Wang R F, Beggs M L, Robertson L H,et al. Design and evaluation of oligonucleotidemicroarray method for the detection of human intestinal bacteria in fecal samples. FEMS Microbiology Letters,2002 ,213: 175~182 [30] Stina B Roth, Jari Jalava, Olli Ruuskanen,et al. Use of an oligonucleotide array for laboratory diagnosis of bacteria responsible for acute upper respiratory infections. J Clin Microbiol, 2004,42(9): 4268~4274 [31] Lemarchand K, Berthiaume F, Maynard C,et al. Optimization of microbial DNA extraction and purification from raw wastewater samples for downstream pathogen detection by microarrays. J Microbiol Methods, 2005,63(2): 115~126 [32] Avarre J C, de Lajudie P, Béna G. Hybridization of genomic DNA to microarrays: A challenge for the analysis of environmental samples. J Microbiol Methods, 2007,69:242~248 [33] Palmer C, Bik E M, DiGiulio D B. et al. Development of the human infant Intestinal microbiota. PLoS Biol,2007,5(7):E177 [34] Kuipers O P. Genomics for food biotechnology: prospects of the use of highthroughput technologies for the improvement of food microorganisms. Curr Opin Biotechnol, 1999,10: 511~516 [35] Bae J W, Rhee S K, Park J R,et al. Development and evaluation of genomeprobing microarrays for monitoring lactic acid bacteria. Appl Environ Microbiol, 2005,71(42): 8825~8835
[1] WU Qing, LIU Hui-yan, FANG Hai-tian, HE Jian-guo, HE Xiao-guang, YU Li-nan, WANG Meng-jiao. Metabolic Control Fermentation Mechanism and Breeding Strategies of Cytidine Excessive Biosynthesis in Bacillus amyloliquefaciens[J]. China Biotechnology, 2015, 35(9): 122-127.
[2] WANG Hong-su, GUAN Gui-jing, LIU Jin-xiang. Application of Alexa Fluor in Cytology and Molecular Biology[J]. China Biotechnology, 2015, 35(9): 71-77.
[3] ZHOU Li-jun, LIU Wen-juan, QI Yong-hao, LI Miao. SOCS3 Negatively Regulates AKT through JNK and STAT3 Signal Pathways[J]. China Biotechnology, 2015, 35(9): 50-56.
[4] LIANG Gao-feng, HE Xiang-feng, CHEN Bao-an. Progress in the Research of miRNA on Tumor Molecular Diagnosis and Therapy[J]. China Biotechnology, 2015, 35(9): 57-65.
[5] WEI Yan, WANG Huan-qin, WU Meng, ZHANG Feng-juan, LIANG Guo-dong, ZHU Wu-yang. Construction and Identification of the Cell Line for Detecting Flaviviruses[J]. China Biotechnology, 2015, 35(9): 35-41.
[6] ZHAO Yang, TIAN Hai-shan, LI Xiao-kun, JIANG Chao . The Research Progress of Fibroblast Growth Factor 20[J]. China Biotechnology, 2015, 35(8): 103-108.
[7] LI Hong-chang, YUAN Lin, ZHANG Ling-qiang . Construction of Transgenic Mice and Phenotypic Analysis of Tumor Suppressor PTEN[J]. China Biotechnology, 2015, 35(8): 1-8.
[8] GUO Wei-ting, ZHANG Hui, ZHA Dong-feng, HUANG Han-feng, HUANG Jing, GAO Hong-liang, CHANG Zhong-yi, JIN Ming-fei, LU Wei . A Rapid Method of Screening for Thermostable Transglutaminase from Streptomyces mobaraensis[J]. China Biotechnology, 2015, 35(8): 83-89.
[9] KANG Xue-jun, YANG Yi-shu . Research Progress on in vitro Models of HIV-1 Latency[J]. China Biotechnology, 2015, 35(8): 96-102.
[10] ZHU Zhi-jian, LIAN Kai-qi, YANG Fan, ZHANG Wei, ZHENG Hai-xue, YANG Xiao-pu . Establishment of a Stable CHO-677 Cell Line Expressing Murine αvβ6 Integrin[J]. China Biotechnology, 2015, 35(8): 23-29.
[11] HUANG Peng, LI Wen-shu, XIE Jun, BAO Jian-ying, CAO Xiao-e, YU Long, XU Yi-xin . Expression of Human Lysozyme-like Protein 6 in Pichia pastoris and Analysis of Enzymatic Activity of the Protein[J]. China Biotechnology, 2015, 35(8): 30-37.
[12] REN Qin, GUO Zhi-hong, WANG Ya-jun, XIE Zhong-kui, WANG Ruo-yu. RNA Interference and Its Application in Enhancing Crop Resistance Against Harmful Eukaryotes[J]. China Biotechnology, 2015, 35(6): 80-89.
[13] ZHANG Chao, XIANG Li-na, CHEN De-pei, LÜ Xin-xin, ZHAO Yi-tong, WANG Lu-yao, XIAO Jian, ZHANG Hong-yu. The Development of the Study on bFGF Promote the Nerve Injury Repair[J]. China Biotechnology, 2015, 35(6): 75-79.
[14] JIA Cui-li, ZHANG Hua-wei, WANG Bin-bin, ZHU Hong-ji, QIAO Jian-jun. Advances in Research on Natural Competence of Gram-positive Bacteria and Its Physiological Properties[J]. China Biotechnology, 2015, 35(6): 90-100.
[15] LI Jia-xin, FENG Wei, WANG Zhi-gang, WANG Yan-feng. CRISPR/Cas9 System and Its Applications in Transgenic Animals[J]. China Biotechnology, 2015, 35(6): 109-115.