Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2008, Vol. 28 Issue (8): 23-30    DOI:
    
Molecular cloning and expression of Cardiotoxin Ⅲ from Naja naja atra in E.coli and Yeast Pichia pastoris
Ping Lv Jing liu Kangsen Xu
Download: HTML   PDF(481KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Chinese cobra (Naja naja atra) cardiotoxins are three-fingered family with 60-62 amino acids bind by four disulfide bonds. CardiotoxinⅢ (CTXⅢ) is one of the major toxic component which can cause hemolysis and cytotoxicity. However, there is no report on the fusion expression of CTXⅢ in soluble form so far. We reported here the cloning, expression and purification of recombinant CTX Ⅲ (rCTXⅢ) from Naja naja atra in E. coli and in yeast Pichia pastoris. CTXⅢ gene, fused with enterokinase in E.coli His-patch Thioredoxin expression system, were expressed in soluble form and released by osmotic-shock treatment. CTX Ⅲ gene was also cloned and expressed in the methylotropic yeast Pichia pastoris pPIC9K expression vector in the first time. The yield of the secretion level was 9.5 mg/liter. Using straightforward one-step chromatography procedure, the rCTXⅢ, with three additional amino acids (GYT) at the N-terminal site, was purified to a purity of more than 90% and recovery yield of 65%. The purified rCTX Ⅲ was further characterized by cytotoxic assay with IC50 4.66 ?g/ml. In summary, we have developed an effective expression and purification system for recombinant CTXs in P. pastoris. This system will permit us the ready isolation of active cardiotoxins. This protocol can also be easily used for the production of the toxin in a larger scale with low cost.



Key wordscardiotoxin      Naja naja atra      fusion protein      pichia pastoris     
Received: 10 March 2008      Published: 25 August 2008
Corresponding Authors: Kangsen Xu   
Cite this article:

Ping Lv Jing liu Kangsen Xu. Molecular cloning and expression of Cardiotoxin Ⅲ from Naja naja atra in E.coli and Yeast Pichia pastoris. China Biotechnology, 2008, 28(8): 23-30.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2008/V28/I8/23

[1] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[2] CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid[J]. China Biotechnology, 2021, 41(10): 52-61.
[3] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[4] Yuan TIAN,Yan-ling LI. Biosynthesis of Fusaruside Based on Recombinant Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 8-14.
[5] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[6] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[7] Ying CHEN,Hai-peng XIAO,Xiao-yan ZHANG,Qing-wei GONG,Li MA,Wen-jia LI,Xiao-feng CHEN. Expression and Characterization of Recombinant GLP-1-IgG4-Fc Fusion Protein[J]. China Biotechnology, 2018, 38(7): 58-66.
[8] Si-ming JIAO,Gong CHENG,Yu-chen ZHANG,Cui FENG,Li-shi REN,Jian-jun LI,Yu-guang DU. Expression of Chitinase from Trichoderma reesei and Analysis the Composition and Structure of its Hydrolysates[J]. China Biotechnology, 2018, 38(10): 30-37.
[9] YANG Qing, WANG Bin, WANG Ya-wei, ZHANG Hua-shan, XIONG Hai-rong, ZHANG Li. Comparison of Signal Peptides for Two Hemicellulase Secretory Expression[J]. China Biotechnology, 2017, 37(8): 15-22.
[10] FENG Xue, GAO Xiang, NIU Chun-qing, LIU Yan. Construction of Pichia pastoris Expression Vector of Codon Optimized αB-crystallin Gene and Expression Optimization[J]. China Biotechnology, 2017, 37(7): 42-47.
[11] ZHAN Chun-jun, LI Xiang, LIU Guo-qiang, LIU Xiu-xia, YANG Yan-kun, BAI Zhong-hu. Identification of Glycerol Transporter in Pichia pastoris and Function Research[J]. China Biotechnology, 2017, 37(7): 48-55.
[12] YANG Xu, HUANG Wei-wei, YAO Yu-feng, LIU Cun-bao, SUN Wen-jia, BAI Hong-mei, MA Yan-bing. Impact Factors on the Expression of Recombinant Human Papillomavirus 16 L1 Protein in Pichia pastoris[J]. China Biotechnology, 2017, 37(10): 1-7.
[13] ZHANG Zhen-yang, YANG Yan-kun, ZHAN Chun-jun, LI Xiang, LIU Xiu-xia, BAI Zhong-hu. Pichia pastoris X-33 ΔGT2 Release the Glycerol Repression on AOX1 and Ef-ficiently Express Heterologous Proteins[J]. China Biotechnology, 2017, 37(1): 38-45.
[14] CAO Rong-yue, YU Min-xia, ZHANG Xin-li, LI Man-man, MIAO Zi-tao, JIN Liang. Construction,Expression,Purification of VEGFⅡ/GRP Fusion Protein and the Effects on RM-1 Prostate Tumor in Mice[J]. China Biotechnology, 2016, 36(8): 9-15.
[15] KANG Guo-kai, FENG Guo-dong, CAO Kun-lin, CHEN Zheng-jun, GE Xiang-yang. Optimization for High Production Fermentation of Lunasin from Recombinant Pichia pastoris[J]. China Biotechnology, 2016, 36(8): 73-79.