Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2008, Vol. 28 Issue (12): 47-51    DOI:
    
Study on the Production of Ergosterol using Corn Straw Hydrolyzates Fermentation
Download: HTML   PDF(1097KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The ergosterols were produced from corn straw hydrolysates fermented by ergosterol yeast, which was obtained from protoplast electrofusion. The effects on the yield of ergosterol were studied in the condition of shaker, such as initial sugar concentration, nitrogen source, pH value and fermentation time. The technical conditions were optimized according to the DPS center-united experimental design principles and the method of response surface analysis with four factors and three levels. The results indicated that the four factors had significant correlation to ergosterol accumulation. The biomass and the ergosterol content could be up to 8.67g/L and 2.37% respectively after cultivated for 32h under optimal technical condition. The structure of ergosterol crystal was characterized by UV, IR and SEM. A new approach of biomass source application was presented.



Key wordsbiomass      corn straw      ergosterol     
Received: 22 August 2008      Published: 20 April 2009
ZTFLH:  Q815  
Cite this article:

. Study on the Production of Ergosterol using Corn Straw Hydrolyzates Fermentation. China Biotechnology, 2008, 28(12): 47-51.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2008/V28/I12/47

[1] Zhi-jin WEI,Xiao LI,Hao-nan WANG,Yong-hao YIN,Li-jun XI,Bao-sheng GE. Enhanced Biomass Production and Lipid Accumulation by Co-cultivation of Chlorella vulgaris with Azotobacter Mesorhizobium sp.[J]. China Biotechnology, 2019, 39(7): 56-64.
[2] Meng-tong QIN,Jing HU,Guan-hua LI. Recent Developments and Future Prospect of Biological Pretreatment[J]. China Biotechnology, 2018, 38(5): 85-91.
[3] YANG Kai, ZHAN Jing-ming, GAO Fen-fang, WU Bao-li, SU Li-xia, ZHOU Wen-ming, XUE Xiang-ming, HAO Jie, ZHAO Yang. Research of Chlorella on the Production of Biodiesel[J]. China Biotechnology, 2015, 35(11): 99-104.
[4] LI Xie-kun, ZHOU Wei-zheng, GUO Ying, WU Hao, XU Jing-liang, YUAN Zhen-hong. Research Progress on Bioethanol Production with Microalgae as Feedstocks[J]. China Biotechnology, 2014, 34(5): 92-99.
[5] LI Lan, WANG Ze-Jian, JIN Yong, SUN Wen-hua, ZHUANG Ying-ping, ZHANG Si-liang. Study on On-line Capacitance Measurement to Evaluate the Viable Biomass During the Fermentation of Pichia[J]. China Biotechnology, 2014, 34(3): 91-95.
[6] LIU Ai-jun, SHI Shou-kun, LI Lan, WANG Ping, WANG Wei, JIA Jun-qiao, WANG Ze-jian, LI Hai-dong, ZHUANG Ying-ping, ZHANG Si-liang. Studies on the Measurement of Viable Biomass in the Optimization of Rifamycins SV Fermentation Process[J]. China Biotechnology, 2014, 34(10): 73-78.
[7] WANG Gui-lin, GUI Xiao-hua, DENG Wei, ZHAO Zhi-liang, YAO Jie, YAN Yun-jun. Two Step Cultivation Mode with “Heterotrophy-stress” for Chlorella Protothecoides Biomass and Lipid Content[J]. China Biotechnology, 2013, 33(3): 99-104.
[8] LIU Hua-qing, LI Hao. Research Progress on Prevention and Controlling of Bacterial Contamination in Biomass Fermentation[J]. China Biotechnology, 2013, 33(12): 114-120.
[9] WU Chong-hui, KOU Wei, SHAO Li-jie, ZHANG Huan, CAO Yan-xin, ZHANG Da-lei. Purify Cellulose of Corn Straw by Acid and Alkali Pretreatment and Research of Reducing Sugar by Enzymatic Hydrolysis[J]. China Biotechnology, 2013, 33(11): 86-91.
[10] YANG Qiu-ling, JI Jing, WANG Gang, WU Wei-dan, HUO Pei. Traits Analysis of Maize with the Psy and Lycb[J]. China Biotechnology, 2012, 32(12): 52-58.
[11] HU Wen-jun, LUO Wei, LI Han-guang, GU Qiu-ya, YU Xiao-bin. Study on Screening and Identification of Oleaginous Microalgae and Its Oil-producing Charateristic[J]. China Biotechnology, 2012, 32(12): 66-72.
[12] YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun. Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology[J]. China Biotechnology, 2012, 32(09): 70-75.
[13] XU Yong, WANG Xun, ZHU Jun-jun, YONG Qiang, YU Shi-yuan. A New Way for Bioconversion of Xylose in High Efficiency[J]. China Biotechnology, 2012, 32(05): 113-119.
[14] GUO Yong-an, TENG Ya-qun, ZHU Ouhaodi, DAU Yi-chen, ZHA Jing-jing, ZHU Xu, ZENG Xiao, XING Xiao-xue, Mitchell Bieniek, Garrett Flack, LV Ji-hua. Study on the Ability of Butanol Production of Different Bacteria with the Fermentable Sugar[J]. China Biotechnology, 2012, 32(03): 91-99.
[15] LI Tao, LI Ai-fen, SANG Min, WU Hong, YIN Shun-ji, ZHANG Cheng-wu. Screening Oleaginous Microalgae and Evaluation of the Oil-producing Charateristic[J]. China Biotechnology, 2011, 31(04): 98-105.