Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2007, Vol. 27 Issue (11): 66-72    DOI:
    
Application of Response Surface Methodology in Optimization of Precursors for Taxol Production by Fusarium mairei K178
Download: HTML   PDF(795KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The concentration of precursors for the production of taxol with Fusarium mairei K178 was optimized by response surface methodology. Firstly, Plackett-Burman design was undertaken to evaluate the effects of eight factors. With statistic regression analysis, the significant factors affecting taxol production were determined as follows: phenylalanine, sodium acetate and sodium benzoate. Box-Behnken design was used to optimize the three critical internal factors mentioned above, and we found out the optimum concentration levels and the relationships among these factors. By quadratic regression model equation with Design-Expert statistic methods, the optimal concentration of the variables were determined as: phenylalanine 2.8mg/L, sodium acetate 3.3g/L, sodium benzoate 31.8mg/L. Under such conditions, the taxol production was increased to 242.6μg/L, which was 15.6% higher than the maximum value in the single factor tests. The experiment values under the optimal conditions agreed with the predicted values, which indicated that the model was proper and effective.



Key wordsFusarium maireiK178      Taxol      Response Surface Methodology      Precursor      Optimization     
Received: 31 July 2007      Published: 25 November 2007
Cite this article:

. Application of Response Surface Methodology in Optimization of Precursors for Taxol Production by Fusarium mairei K178. China Biotechnology, 2007, 27(11): 66-72.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2007/V27/I11/66

[1] TAN Pei-lin,ZHANG Ying,ZHANG Jun,GAO Xiao,WANG Shu-kun,HOU Lin,YUAN Zeng-qiang. Role and Mechanism of Metformin in Oligodendrocyte Precursor Cell Differentiation[J]. China Biotechnology, 2021, 41(9): 1-9.
[2] WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions[J]. China Biotechnology, 2021, 41(8): 42-51.
[3] ZHANG Ying,KONG Xiang-xi,HOU Lin,WANG Shu-kun,YUAN Zeng-qiang. Role and Mechanism of Ozanimod (RPC1063) in Oligodendrocyte Precursor Cell Differentiation[J]. China Biotechnology, 2020, 40(6): 10-19.
[4] JIANG Ji-zhe, PAN Hang, YUE Min, ZHANG Le. The Study of Worldwide Brucella canis of Phylogenetic Groups by Comparative Genomics-based Approaches[J]. China Biotechnology, 2020, 40(3): 38-47.
[5] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[6] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[7] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[8] Yue WANG,Jiang-hua LI,Guo-cheng DU,Long LIU. Molecular Modification of L-amino Acid Deaminase and Optimization of α-ketoglutaric Acid Production by Whole-cell Biocatalysis[J]. China Biotechnology, 2019, 39(3): 56-64.
[9] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[10] Hai-jiao JI,Wen-lei LI,Rui-jing Huang,Jian LI,Han-mei XU. Anti-CD20rh MAb Quality Evaluation and Monoclonal Cell Line Screening[J]. China Biotechnology, 2018, 38(8): 34-40.
[11] Ya-li HAN,Guang-heng YANG,Yan-wen CHEN,Xiu-li GONG,Jing-zhi ZHANG. The Optimization of Self-deleting Lentiviral Vector Carrying Human β-globin Gene and Promoter[J]. China Biotechnology, 2018, 38(7): 50-57.
[12] Li ZHANG,Juan DING,Yu-cheng HAO,Cheng YE,Yang PU. Identification of a Marine Microalgae and Optimization of Protoplast Preparation[J]. China Biotechnology, 2018, 38(11): 42-50.
[13] Jing WANG,Xin XU,Xue-yu WANG,Lun-guang YAO,Yun-chao KAN,Jun JI. Research Progress of Loop-Mediated Isothermal Amplification in Food Safety Testing[J]. China Biotechnology, 2018, 38(11): 84-91.
[14] FENG Xue, GAO Xiang, NIU Chun-qing, LIU Yan. Construction of Pichia pastoris Expression Vector of Codon Optimized αB-crystallin Gene and Expression Optimization[J]. China Biotechnology, 2017, 37(7): 42-47.
[15] WU Yi, ZHANG Li-ying, QUAN Chun-shan, ZHONG Mei-ling, WANG Lu-lu, WANG Guan-tian. Synthesis of the ComX Pheromone Precursor Peptide in Bacillus amyloliquefaciens Q-426 Quorum Sensing System[J]. China Biotechnology, 2017, 37(5): 38-44.