Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology
研究报告     
Immunogenicity of different genetic type rotavirus NSP4 in mice
Download: HTML   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  NSP4, as the diarrhea-related protein of rotavirus, is becoming an attractive candidate for vaccine development. To compare the immunogenicity of NSP4 from different genetic groups, we constructed eukaryotic expression plasmids comprising the NSP4 genes from four different genetic types using the pCI vector. The recombinant vectors were designated as pCI-97B6, pCI-97S36, pCI-97S34 and pCI-97SZ8, respectively. Following the conformation of the transient expression of the constructs in 293 cells, the plasmids were respectively subjected to the 5 round i.m. inoculation of BALB/c mice. The specific antibodies against NSP4 as well as the IgG1/IgG2a subclasses of immunoglobulin in mice sera were examined with indirect ELISA after each immunization. The results showed that the immunization of plasmids expression NSP4s could elicit not only humoral but also cellular immunity, but the humoral immune response is dominant. There is a difference of immunogenecity among the NSP4 of different genetic type. Further studies were needed to focus on the relationship between the immunogenicity and protection effect.

Key wordsimmunogenicity      vaccine      Rotavirus      NSP4     
Received: 27 October 2005      Published: 25 April 2006
Cite this article:

. Immunogenicity of different genetic type rotavirus NSP4 in mice. China Biotechnology, 2006, 26(04): 7-11.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2006/V26/I04/7

[1] XIAO Yun-xi,ZHANG Jun-he,YANG Wen-wen,CHENG Hong-wei. Research Progress of Human Diploid Cells for Vaccine Production[J]. China Biotechnology, 2021, 41(11): 74-81.
[2] ZHU Xiao-jing,WANG Rui,ZHANG Xin-xin,JIN Jia-xin,LU Wen-long,DING Da-shun,HUO Cui-mei,LI Qing-mei,SUN Ai-jun,ZHUANG Guo-qing. Construction of MDV Recombinant Vaccine Strain Integrated F Gene Using Bacterial Artificial Chromosome Technique[J]. China Biotechnology, 2021, 41(10): 33-41.
[3] CHENG Xu,YANG Yu-qing,WU Sai-nan,HOU Qin-long,LI Yong-mei,HAN Hui-ming. Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response[J]. China Biotechnology, 2020, 40(7): 41-50.
[4] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[5] LIU Zhen-zhen,TIAN Da-yong. Development of Sucrose Density Gradient Centrifugation Purification Process for Rabies Vaccine[J]. China Biotechnology, 2020, 40(4): 25-33.
[6] QIAN Ying,QIAN Chen,BAI Xiao-qing,WANG Jing-jing. Application of Adjuvant in Cancer Immunotherapy[J]. China Biotechnology, 2020, 40(3): 96-103.
[7] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[8] JING Hui-yuan,DUAN Er-zhen,DONG Wang. In Vitro Transcribed Self-amplifying mRNA Vaccines[J]. China Biotechnology, 2020, 40(12): 25-30.
[9] LIAO Xiao-yan,CHEN Li-li. The Progress in the Development of COVID-19 Vaccine[J]. China Biotechnology, 2020, 40(12): 8-17.
[10] FENG Xue-jiao,HOU Hai-long,YU Qiong,WANG Jun-shu. Market Analysis and Countermeasures of Cervical Cancer Vaccine in China[J]. China Biotechnology, 2020, 40(11): 96-101.
[11] QI Jia-long, GAO Rui-yu, JIN Shu-mei, GAO Fu-lan, YANG Xu, MA Yan-bing, LIU Cun-bao. Expression and Identification of Varicella-Zoster Virus Glycoprotein E and Immunogenicity Assay[J]. China Biotechnology, 2019, 39(8): 17-24.
[12] Yan GAO,Jing-jing DU,Bin WANG,Qi LIU,Zhi-qiang SHEN. Study on β-Propiolactone in Inactivation Process of Rabies Vaccine by Gas Chromatography[J]. China Biotechnology, 2019, 39(6): 25-31.
[13] Lin YANG,Zhe-yan FU,Zheng-bing LV,Jian-hong SHU. Classification and Mechanism of Immune Adjuvant[J]. China Biotechnology, 2019, 39(5): 114-119.
[14] Jia-yue XU,Zi-qian LI,Ge ZHANG. Advanced in Research Dengue Virus 3'UTRΔ30 Series Vaccines[J]. China Biotechnology, 2019, 39(3): 97-104.
[15] Fu-lan GAO,Jia-long QI,Cong-yan SHU,Hang-hang XIE,Wei-wei HUANG,Cun-bao LIU,Xu YANG,Wen-jia SUN,Hong-mei BAI,Yan-bing MA. Efficient Secretory Expression of Optimized Mouse Interleukin-33 Gene in Mammalian Cells[J]. China Biotechnology, 2019, 39(3): 46-55.