Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2024, Vol. 44 Issue (2/3): 164-175    DOI: 10.13523/j.cb.2309025
    
Botryococcus braunii: From Carbon Dioxide Fixation to the Biosynthesis of Alkanes, Alkenes and Terpenes
YU Bohan,GAO Baoyan,ZHANG Hu,ZHANG Chengwu**()
Research Center of Hidrobiology, Jinan University, Guangzhou 510632, China
Download: HTML   PDF(1560KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Highly efficient bioproduction of hydrocarbons is one of the effective means to solve the shortage of petroleum and other liquid fuels, while microalgae-based oils are a reliable choice for the production of sustainable biofuels. Botryococcus braunii is an irregular unicellular colony belonging to the chlorophyta, which has received widespread attention for accumulating the large amounts of hydrocarbons, with a maximum content of up to 75% of its dry weight. In recent years, continued in-depth research into the biological characteristics and growth physiology of B.braunii, has improved the feasibility of its large-scale cultivation and industrial production of hydrocarbons. In this review, the potential of B.braunii as a novel oleaginous microalga for hydrocarbon production was briefly described from the aspects of biological characteristics, hydrocarbon synthetic pathways and regulatory factors, omics studies, and large-scale cultivation techniques. This could provide a reference for exploring the large-scale industrial production of biofuels based on B.braunii, thus accelerating the development and exploitation of this microalgal resource.



Key wordsBotryococcus braunii      Alkanes      Alkenes      Terpenes      Omics      Large-scale cultivation     
Received: 21 September 2023      Published: 03 April 2024
ZTFLH:  Q81  
Cite this article:

YU Bohan, GAO Baoyan, ZHANG Hu, ZHANG Chengwu. Botryococcus braunii: From Carbon Dioxide Fixation to the Biosynthesis of Alkanes, Alkenes and Terpenes. China Biotechnology, 2024, 44(2/3): 164-175.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2309025     OR     https://manu60.magtech.com.cn/biotech/Y2024/V44/I2/3/164

族系 碳氢化合物 其他脂类
A C23 ~ C33的奇数碳直链二烯烃及三烯烃,以C27、C29、C31为主 C14 ~ C30的偶数碳脂肪酸,三酰甘油,C52~ C64的醛类,甾醇,酚类等
B C30 ~ C37的三萜烯,主要为葡萄藻烯和角鲨烯及二者的甲基化衍生物 C14 ~ C30的偶数碳脂肪酸,甾醇,葡萄藻烯和角鲨烯的甲基环氧化物等
L C40四萜烯,主要为番茄二烯和少量番茄三烯及番茄五烯 C14 ~ C30的偶数碳脂肪酸,甾醇,番茄二烯环氧化物及其他衍生物等
S C18和C20饱和正构烷烃 C18和C20环氧正构烷烃等
Table 1 Hydrocarbons and other lipids in the four races of B.braunii
Fig.1 Three B.braunii strains of different races 807-1: Race A, obtained from SAG; SC-1: Race B and SC-2, Race L, isolated from freshwater environments in South China; The cells in the left column were in the logarithmic phase, while those in the right column were in the stationary phase; Bar, 5 μm
Fig.2 Fatty acids, alkane, alkene and terpenoid hydrocarbons synthesis pathway of B.braunii
Fig.3 Common microalgae cultivation systems
[1]   Chisti Y. Biodiesel from microalgae. Biotechnology Advances, 2007, 25(3): 294-306.
doi: 10.1016/j.biotechadv.2007.02.001 pmid: 17350212
[2]   Wijffels R H, Barbosa M J. An outlook on microalgal biofuels. Science, 2010, 329(5993): 796-799.
doi: 10.1126/science.1189003 pmid: 20705853
[3]   Moody J W, McGinty C M, Quinn J C. Global evaluation of biofuel potential from microalgae. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(23): 8691-8696.
[4]   Yoshida M, Tanabe Y, Yonezawa N, et al. Energy innovation potential of oleaginous microalgae. Biofuels, 2012, 3(6): 761-781.
doi: 10.4155/bfs.12.63
[5]   Lee S Y, Kim H M, Cheon S. Metabolic engineering for the production of hydrocarbon fuels. Current Opinion in Biotechnology, 2015, 33: 15-22.
doi: 10.1016/j.copbio.2014.09.008 pmid: 25445543
[6]   Suzuki R, Ito N, Uno Y, et al. Transformation of lipid bodies related to hydrocarbon accumulation in a green alga, Botryococcus braunii (Race B). PLoS One, 2013, 8(12): e81626.
[7]   Uno Y, Nishii I, Kagiwada S, et al. Colony sheath formation is accompanied by shell formation and release in the green alga Botryococcus braunii (race B). Algal Research, 2015, 8: 214-223.
doi: 10.1016/j.algal.2015.02.015
[8]   Hirano K, Hara T, Ardianor, et al. Detection of the oil-producing microalga Botryococcus braunii in natural freshwater environments by targeting the hydrocarbon biosynthesis gene SSL-3. Scientific Reports, 2019, 9: 16974.
doi: 10.1038/s41598-019-53619-y
[9]   Kawachi M, Tanoi T, Demura M, et al. Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii. Algal Research, 2012, 1(2): 114-119.
doi: 10.1016/j.algal.2012.05.003
[10]   Volkman J K. Acyclic isoprenoid biomarkers and evolution of biosynthetic pathways in green microalgae of the genus Botryococcus. Organic Geochemistry, 2014, 75: 36-47.
doi: 10.1016/j.orggeochem.2014.06.005
[11]   Metzger P, Berkaloff C, Casadevall E, et al. Alkadiene- and botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry, 1985, 24(10): 2305-2312.
doi: 10.1016/S0031-9422(00)83032-0
[12]   Achitouv E, Metzger P, Rager M N, et al. C31-C 34 methylated squalenes from a Bolivian strain of Botryococcus braunii. Phytochemistry, 2004, 65(23): 3159-3165.
doi: 10.1016/j.phytochem.2004.09.015 pmid: 15541746
[13]   Thapa H R, Tang S, Sacchettini J C, et al. Tetraterpene synthase substrate and product specificity in the green microalga Botryococcus braunii race L. ACS Chemical Biology, 2017, 12(9): 2408-2416.
doi: 10.1021/acschembio.7b00457 pmid: 28813599
[14]   Weiss T L, Spencer Johnston J, Fujisawa K, et al. Phylogenetic placement, genome size, and gc content of the liquid-hydrocarbon-producing green microalga Botryococcus braunii strain Berkeley (showa) (chlorophyta)1. Journal of Phycology, 2010, 46(3): 534-540.
doi: 10.1111/jpy.2010.46.issue-3
[15]   Weiss T L, Johnston J S, Fujisawa K, et al. Genome size and phylogenetic analysis of the A and L races of Botryococcus braunii. Journal of Applied Phycology, 2011, 23(5): 833-839.
doi: 10.1007/s10811-010-9586-7
[16]   Banerjee A, Sharma R, Chisti Y, et al. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology, 2002, 22(3): 245-279.
doi: 10.1080/07388550290789513 pmid: 12405558
[17]   Jin J, Dupré C, Yoneda K, et al. Characteristics of extracellular hydrocarbon-rich microalga Botryococcus braunii for biofuels production: recent advances and opportunities. Process Biochemistry, 2016, 51(11): 1866-1875.
doi: 10.1016/j.procbio.2015.11.026
[18]   Metzger P, Casadevall E, Coute A. Botryococcene distribution in strains of the green alga Botryococcus braunii. Phytochemistry, 1988, 27(5): 1383-1388.
doi: 10.1016/0031-9422(88)80199-7
[19]   Park M ‐, Heguri K, Hirata K, et al. Production of alternatives to fuel oil from organic waste by the alkane‐producing bacterium, Vibrio furnissii M1. Journal of Applied Microbiology, 2005, 98(2): 324-331.
pmid: 15659187
[20]   Derber C, Coudron P, Tarr C, et al. Vibrio furnissii: an unusual cause of bacteremia and skin lesions after ingestion of seafood. Journal of Clinical Microbiology, 2011, 49(6): 2348-2349.
doi: 10.1128/JCM.00092-11 pmid: 21450956
[21]   Kaya K, Nakazawa A, Matsuura H, et al. Thraustochytrid Aurantiochytrium sp. 18W-13a accummulates high amounts of squalene. Bioscience, Biotechnology, and Biochemistry, 2011, 75(11): 2246-2248.
doi: 10.1271/bbb.110430
[22]   Nakazawa A, Matsuura H, Kose R, et al. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresource Technology, 2012, 109: 287-291.
doi: 10.1016/j.biortech.2011.09.127 pmid: 22023965
[23]   Moheimani N R, Cord-Ruwisch R, Raes E, et al. Non-destructive oil extraction from Botryococcus braunii (Chlorophyta). Journal of Applied Phycology, 2013, 25(6): 1653-1661.
doi: 10.1007/s10811-013-0012-9
[24]   Moheimani N R, Matsuura H, Watanabe M M, et al. Non-destructive hydrocarbon extraction from Botryococcus braunii BOT-22 (race B). Journal of Applied Phycology, 2014, 26(3): 1453-1463.
doi: 10.1007/s10811-013-0179-0
[25]   Beardall J, Raven J A. Carbon acquisition by microalgae. The Physiology of Microalgae. Cham: Springer, 2016: 89-99.
[26]   Zienkiewicz K, Du Z Y, Ma W, et al. Stress-induced neutral lipid biosynthesis in microalgae: Molecular, cellular and physiological insights. Biochimica et Biophysica Acta, 2016, 1861(9 Pt B): 1269-1281.
doi: S1388-1981(16)30029-4 pmid: 26883557
[26]   [27] Rezanka T, Sigler K. Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms. Progress in Lipid Research, 2009, 48(3-4): 206-238.
doi: S1388-1981(16)30029-4 pmid: 26883557
[27]   Rezanka T, Sigler K. Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms. Progress in Lipid Research, 2009, 48(3-4): 206-238.
doi: 10.1016/j.plipres.2009.03.003 pmid: 19336244
[28]   Templier L, Largeau C, Casadevall E. Effect of various inhibitors on biosynthesis of non-isoprenoid hydrocarbons in Botryococcus braunii. Phytochemistry, 1987, 26(2): 377-383.
doi: 10.1016/S0031-9422(00)81418-1
[29]   Templier J, Largeau C, Casadevall E. Mechanism of non-isoprenoid hydrocarbon biosynthesis in Botryococcus braunii. Phytochemistry, 1984, 23(5): 1017-1028.
doi: 10.1016/S0031-9422(00)82602-3
[30]   Bognar A L, Paliyath G, Rogers L, et al. Biosynthesis of alkanes by particulate and solubilized enzyme preparations from pea leaves (Pisum sativum). Archives of Biochemistry and Biophysics, 1984, 235(1): 8-17.
pmid: 6497395
[31]   Dennis M W, Kolattukudy P E. Alkane biosynthesis by decarbonylation of aldehyde catalyzed by a microsomal preparation from Botryococcus braunii. Archives of Biochemistry and Biophysics, 1991, 287(2): 268-275.
pmid: 1898004
[32]   Dennis M, Kolattukudy P E. A cobalt-porphyrin enzyme converts a fatty aldehyde to a hydrocarbon and CO. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(12): 5306-5310.
[33]   Jetter R, Kunst L. Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. The Plant Journal, 2008, 54(4): 670-683.
doi: 10.1111/j.1365-313X.2008.03467.x pmid: 18476871
[34]   Schirmer A, Rude M A, Li X Z, et al. Microbial biosynthesis of alkanes. Science, 2010, 329(5991): 559-562.
doi: 10.1126/science.1187936 pmid: 20671186
[35]   Willis R M, Wahlen B D, Seefeldt L C, et al. Characterization of a fatty acyl-CoA reductase from Marinobacter aquaeolei VT8: a bacterial enzyme catalyzing the reduction of fatty acyl-CoA to fatty alcohol. Biochemistry, 2011, 50(48): 10550-10558.
doi: 10.1021/bi2008646
[36]   Vioque J, Kolattukudy P E. Resolution and purification of an aldehyde-generating and an alcohol-generating fatty acyl-CoA reductase from pea leaves (Pisum sativum L.). Archives of Biochemistry and Biophysics, 1997, 340(1): 64-72.
doi: 10.1006/abbi.1997.9932 pmid: 9126278
[37]   Wang X, Kolattukudy P E. Solubilization and purification of aldehyde-generating fatty acyl-CoA reductase from green alga Botryococcus braunii. FEBS Letters, 1995, 370(1-2): 15-18.
pmid: 7649295
[38]   Sasso S, Pohnert G, Lohr M, et al. Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS Microbiology Reviews, 2012, 36(4): 761-785.
doi: 10.1111/j.1574-6976.2011.00304.x pmid: 22091538
[39]   Lohr M, Schwender J, Polle J E W. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Science, 2012, 185-186: 9-22.
doi: 10.1016/j.plantsci.2011.07.018 pmid: 22325862
[40]   Sato Y, Ito Y, Okada S, et al. Biosynthesis of the triterpenoids, botryococcenes and tetramethylsqualene in the B race of Botryococcus braunii via the non-mevalonate pathway. Tetrahedron Letters, 2003, 44(37): 7035-7037.
doi: 10.1016/S0040-4039(03)01784-2
[41]   Ioki M, Baba M, Nakajima N, et al. Transcriptome analysis of an oil-rich race B strain of Botryococcus braunii (BOT-22) by de novo assembly of pyrosequencing cDNA reads. Bioresource Technology, 2012, 109: 292-296.
doi: 10.1016/j.biortech.2011.08.104
[42]   Schwender J, Seemann M, Lichtenthaler H K, et al. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. The Biochemical Journal, 1996, 316 (Pt 1): 73-80.
doi: 10.1042/bj3160073
[43]   Duvold T, Calí P, Bravo J M, et al. Incorporation of 2-C-methyl-d-erythritol, a putative isoprenoid precursor in the mevalonate-independent pathway, into ubiquinone and menaquinone of Escherichia coli. Tetrahedron Letters, 1997, 38(35): 6181-6184.
doi: 10.1016/S0040-4039(97)01392-0
[44]   Ogata H, Goto S, Sato K, et al. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 1999, 27(1): 29-34.
doi: 10.1093/nar/27.1.29 pmid: 9847135
[45]   Breitenbach J, Visser H, Verdoes J C, et al. Engineering of geranylgeranyl pyrophosphate synthase levels and physiological conditions for enhanced carotenoid and astaxanthin synthesis in Xanthophyllomyces dendrorhous. Biotechnology Letters, 2011, 33(4): 755-761.
doi: 10.1007/s10529-010-0495-2 pmid: 21165672
[46]   Thabet I, Guirimand G, Guihur A, et al. Characterization and subcellular localization of geranylgeranyl diphosphate synthase from Catharanthus roseus. Molecular Biology Reports, 2012, 39(3): 3235-3243.
doi: 10.1007/s11033-011-1091-9 pmid: 21706164
[47]   Bouvier F, Rahier A, Camara B. Biogenesis, molecular regulation and function of plant isoprenoids. Progress in Lipid Research, 2005, 44(6): 357-429.
doi: 10.1016/j.plipres.2005.09.003 pmid: 16289312
[48]   Joyard J, Ferro M, Masselon C, et al. Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Molecular Plant, 2009, 2(6): 1154-1180.
doi: 10.1093/mp/ssp088 pmid: 19969518
[49]   Metzger P, Casadevall E. Lycopadiene, a tetraterpenoid hydrocarbon from new strains of the green alga Botryococcus braunii. Tetrahedron Letters, 1987, 28(34): 3931-3934.
doi: 10.1016/S0040-4039(00)96423-2
[50]   Jennings S M, Tsay Y H, Fisch T M, et al. Molecular cloning and characterization of the yeast gene for squalene synthetase. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(14): 6038-6042.
[51]   Metzger P, Largeau C. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Applied Microbiology and Biotechnology, 2005, 66(5): 486-496.
doi: 10.1007/s00253-004-1779-z pmid: 15630516
[52]   Niehaus T D, Okada S, Devarenne T P, et al. Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): 12260-12265.
[53]   Okada S, Devarenne T P, Chappell J. Molecular characterization of squalene synthase from the green microalga Botryococcus braunii, race B. Archives of Biochemistry and Biophysics, 2000, 373(2): 307-317.
doi: 10.1006/abbi.1999.1568 pmid: 10620354
[54]   Niehaus T D, Kinison S, Okada S, et al. Functional identification of triterpene methyltransferases from Botryococcus braunii race B. Journal of Biological Chemistry, 2012, 287(11): 8163-8173.
doi: 10.1074/jbc.M111.316059 pmid: 22241476
[55]   Thapa H R, Naik M T, Okada S, et al. A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in Botryococcus braunii Race L. Nature Communications, 2016, 7: 11198.
doi: 10.1038/ncomms11198 pmid: 27050299
[56]   Arora N, Yen H W, Philippidis G P. Harnessing the power of mutagenesis and adaptive laboratory evolution for high lipid production by oleaginous microalgae and yeasts. Sustainability, 2020, 12(12): 5125.
[57]   Fu W Q, Chaiboonchoe A, Khraiwesh B, et al. Algal cell factories: approaches, applications, and potentials. Marine Drugs, 2016, 14(12): 225.
[58]   Deka D, Marwein R, Chikkaputtaiah C, et al. Strain improvement of long-chain fatty acids producing Micractinium sp. by flow cytometry. Process Biochemistry, 2020, 96: 90-101.
doi: 10.1016/j.procbio.2020.06.004
[59]   Tennant R K, Lux T M, Sambles C M, et al. Palaeogenomics of the hydrocarbon producing microalga Botryococcus braunii. Scientific Reports, 2019, 9: 1776.
doi: 10.1038/s41598-018-38236-5
[60]   Guarnieri M T, Pienkos P T. Algal omics: unlocking bioproduct diversity in algae cell factories. Photosynthesis Research, 2015, 123(3): 255-263.
doi: 10.1007/s11120-014-9989-4 pmid: 24627032
[61]   Zou J J, Bi G Q. Complete mitochondrial genome of a hydrocarbon-producing green alga Botryococcus braunii strain Showa. Mitochondrial DNA Part A, DNA Mapping, Sequencing, and Analysis, 2016, 27(4): 2619-2620.
[62]   Turmel M, Otis C, Lemieux C. Dynamic evolution of the chloroplast genome in the green algal classes pedinophyceae and trebouxiophyceae. Genome Biology and Evolution, 2015, 7(7): 2062-2082.
doi: 10.1093/gbe/evv130 pmid: 26139832
[63]   Blifernez-Klassen O, Wibberg D, Winkler A, et al. Complete chloroplast and mitochondrial genome sequences of the hydrocarbon oil-producing green microalga Botryococcus braunii race B (showa). Genome Announcements, 2016, 4(3): e00524-e00516.
[64]   Hughes A H, Magot F, Tawfike A F, et al. Exploring the chemical space of macro- and micro-algae using comparative metabolomics. Microorganisms, 2021, 9(2): 311.
[65]   Blifernez-Klassen O, Chaudhari S, Klassen V, et al. Metabolic survey of Botryococcus braunii: impact of the physiological state on product formation. PLoS One, 2018, 13(6): e0198976.
[66]   Gautam K, Tripathi J K, Pareek A, et al. Growth and secretome analysis of possible synergistic interaction between green algae and cyanobacteria. Journal of Bioscience and Bioengineering, 2019, 127(2): 213-221.
doi: 10.1016/j.jbiosc.2018.07.005
[67]   Tenenboim H, Burgos A, Willmitzer L, et al. Using lipidomics for expanding the knowledge on lipid metabolism in plants. Biochimie, 2016, 130: 91-96.
[68]   Rezanka T, Lukavsky J, Vítová M, et al. Lipidomic analysis of Botryococcus (Trebouxiophyceae, Chlorophyta): Identification of lipid classes containing very long chain fatty acids by offline two-dimensional LC-tandem MS. Phytochemistry, 2018, 148: 29-38.
[69]   Rismani-Yazdi H, Haznedaroglu B Z, Hsin C, et al. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnology for Biofuels, 2012, 5(1): 74.
[70]   Molnár I, Lopez D, Wisecaver J H, et al. Bio-crude transcriptomics: gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa). BMC Genomics, 2012, 13: 576.
doi: 10.1186/1471-2164-13-576
[71]   Zhang X L, Wen F, Xu Z Y, et al. De novo transcriptomic analysis of the oleaginous alga Botryococcus braunii AC768 (Chlorophyta). Journal of Applied Phycology, 2019, 31(1): 255-267.
doi: 10.1007/s10811-018-1577-0
[72]   Rai V, Karthikaichamy A, Das D, et al. Multi-omics frontiers in algal research: techniques and progress to explore biofuels in the postgenomics world. Omics, 2016, 20(7): 387-399.
doi: 10.1089/omi.2016.0065 pmid: 27315140
[73]   Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 2008, 54(4): 621-639.
doi: 10.1111/j.1365-313X.2008.03492.x pmid: 18476868
[74]   Cao M, Zhang F F, Mao Y X, et al. Characterization of the squalene-rich Botryococcus braunii Abt02 strain. Journal of Oceanology and Limnology, 2019, 37(2): 675-684.
doi: 10.1007/s00343-019-8053-9
[75]   Manchanda T, Tyagi R, Sharma D K. Application of nutrient stress conditions for hydrocarbon and oil production by Botryococcus braunii. Biofuels, 2019, 10(3): 271-277.
doi: 10.1080/17597269.2015.1132373
[76]   Khozin-Goldberg I, Didi-Cohen S, Shayakhmetova I, et al. Biosynthesis of eicosapentaenoic acid (EPA) in the freshwater eustigmatophyte Monodus subterraneus (Eustigmatophyceae)1. Journal of Phycology, 2002, 38(4): 745-756.
doi: 10.1046/j.1529-8817.2002.02006.x
[77]   Li X, Hu H Y, Zhang Y P. Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresource Technology, 2011, 102(3): 3098-3102.
doi: 10.1016/j.biortech.2010.10.055
[78]   Lu Y D, Chi X Y, Yang Q L, et al. Molecular cloning and stress-dependent expression of a gene encoding Delta(12)-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7. Extremophiles, 2009, 13(6): 875-884.
doi: 10.1007/s00792-009-0275-x
[79]   Manchanda T, Tyagi R, Sharma D K, et al. Application of sea water for hydrocarbon and oil production by Botryococcus braunii. Advanced Science Letters, 2014, 20(7): 1719-1722.
doi: 10.1166/asl.2014.5588
[80]   Rao A R, Dayananda C, Sarada R, et al. Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technology, 2007, 98(3): 560-564.
doi: 10.1016/j.biortech.2006.02.007
[81]   Matsushima D, Jenke-Kodama H, Sato Y, et al. The single cellular green microalga Botryococcus braunii, race B possesses three distinct 1-deoxy-D. Plant Science, 2012, 185-186: 309-320.
[82]   Ioki M, Baba M, Bidadi H, et al. Modes of hydrocarbon oil biosynthesis revealed by comparative gene expression analysis for race A and race B strains of Botryococcus braunii. Bioresource Technology, 2012, 109: 271-276.
doi: 10.1016/j.biortech.2011.11.078
[83]   Benedetti M, Vecchi V, Barera S, et al. Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microbial Cell Factories, 2018, 17(1): 173.
[84]   Chen C Y, Yeh K L, Aisyah R, et al. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology, 2011, 102(1): 71-81
doi: 10.1016/j.biortech.2010.06.159
[85]   Jorquera O, Kiperstok A, Sales E A, et al. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresource Technology, 2010, 101(4): 1406-1413.
doi: 10.1016/j.biortech.2009.09.038 pmid: 19800784
[86]   Saad M G, Dosoky N S, Zoromba M S, et al. Algal biofuels: current status and key challenges. Energies, 2019, 12(10): 1920.
[87]   Barkia I, Saari N, Manning S R. Microalgae for high-value products towards human health and nutrition. Marine Drugs, 2019, 17(5): 304.
[88]   Brennan L, Owende P. Biofuels from microalgae:a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 2010, 14(2): 557-577.
doi: 10.1016/j.rser.2009.10.009
[89]   Shen Y, Yuan W, Pei Z J, et al. Microalgae mass production methods. Transactions of the Asabe, 2009, 52(4): 1275-1287.
doi: 10.13031/2013.27771
[90]   Cheng P F, Ji B, Gao L L, et al. The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresource Technology, 2013, 138: 95-100.
doi: 10.1016/j.biortech.2013.03.150
[91]   Cheng P F, Wang J F, Liu T Z. Effect of cobalt enrichment on growth and hydrocarbon accumulation of Botryococcus braunii with immobilized biofilm attached cultivation. Bioresource Technology, 2015, 177: 204-208.
doi: 10.1016/j.biortech.2014.11.088
[92]   Wang S K, Wang F, Stiles A R, et al. Botryococcus braunii cells: Ultrasound-intensified outdoor cultivation integrated with in situ magnetic separation. Bioresource Technology, 2014, 167: 376-382.
doi: 10.1016/j.biortech.2014.06.028
[93]   Ashokkumar V, Rengasamy R. Mass culture of Botryococcus braunii Kutz. under open raceway pond for biofuel production. Bioresource Technology, 2012, 104: 394-399.
doi: 10.1016/j.biortech.2011.10.093
[94]   Ranga Rao A, Ravishankar G A, Sarada R. Cultivation of green alga Botryococcus braunii in raceway, circular ponds under outdoor conditions and its growth, hydrocarbon production. Bioresource Technology, 2012, 123: 528-533.
doi: 10.1016/j.biortech.2012.07.009 pmid: 22940364
[95]   Ruangsomboon S, Dimak J, Jongput B, et al. Outdoor open pond batch production of green microalga Botryococcus braunii for high hydrocarbon production: enhanced production with salinity. Scientific Reports, 2020, 10: 2731.
doi: 10.1038/s41598-020-59645-5 pmid: 32066792
[96]   Zheng Y B, Chi Z Y, Lucker B, et al. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production. Bioresource Technology, 2012, 103(1): 484-488.
doi: 10.1016/j.biortech.2011.09.122 pmid: 22023968
[97]   Han F F, Huang J K, Li Y G, et al. Enhancement of microalgal biomass and lipid productivities by a model of photoautotrophic culture with heterotrophic cells as seed. Bioresource Technology, 2012, 118: 431-437.
doi: 10.1016/j.biortech.2012.05.066 pmid: 22717560
[98]   Fan J H, Huang J K, Li Y G, et al. Sequential heterotrophy-dilution-photoinduction cultivation for efficient microalgal biomass and lipid production. Bioresource Technology, 2012, 112: 206-211.
doi: 10.1016/j.biortech.2012.02.046 pmid: 22406065
[99]   Dewi R N, Mahreni, Azimatun Nur M M, et al. Enhancing the biomass production of microalgae by mixotrophic cultivation using virgin coconut oil mill effluent. Environmental Engineering Research, 2023, 28(2):1-8.
[100]   Wan M X, Zhang Z, Wang R X, et al. High-yield cultivation of Botryococcus braunii for biomass and hydrocarbons. Biomass and Bioenergy, 2019, 131: 105399.
doi: 10.1016/j.biombioe.2019.105399
[1] ZHANG Zhuyu, JIANG Na, CHEN Ruibing. Progress in Understanding the Interaction between Metabolic Enzymes and RNA[J]. China Biotechnology, 2024, 44(2/3): 124-133.
[2] Li XU, Ruonan YANG, Yue WANG, Huilin SHI, Zhenqi LI, Chenqi JIN, Wei LI, Ping XU. Analysis of the Development Trends of Life and Health Sciences and Technology[J]. China Biotechnology, 2024, 44(1): 32-40.
[3] Yujia JIANG, Zehua JING, Jing FENG, Xun XU. Recent Advances in Spatiotemporal Omics Technology[J]. China Biotechnology, 2024, 44(1): 19-31.
[4] XU Jian-ren, WANG Lan, MA Hai-jun. Research Progress of Sequence Analysis of Comparative Genomes in Saccharomyces cerevisiae for Bioethanol Production[J]. China Biotechnology, 2023, 43(9): 77-92.
[5] MA Li, CUI Hai-xing, LI Jin-ze. Analysis of Patent Trends for the Spatial Omics Technology[J]. China Biotechnology, 2023, 43(8): 111-117.
[6] Ruo-hang SUN, Rui-bing CHEN. Advances in Ide.pngication of RNA-binding Proteins Based on Mass Spectrometry[J]. China Biotechnology, 2023, 43(7): 77-87.
[7] JIN Qian, SHI Meng, LIU Zhan-biao, ZHANG Yi, ZHU Si-qing, SHI Jing-jing, ZONG Xing-xing, CHEN Xue-jun, LI Li-qin. Analysis of Differentially Expressed Proteins in the Cervical Spinal Cord of Guinea Pigs Subacutely Exposed to Soman[J]. China Biotechnology, 2023, 43(2/3): 64-74.
[8] DONG Yuan-yuan, BAO Qiu-yu, WANG De-xiang, WEN Hong-tao, YANG Xing-chao, WAN Ning, YE Hui. Advance in Metabolite-mediated Non-enzymatic Post-translational Modifications[J]. China Biotechnology, 2023, 43(10): 43-51.
[9] LIU Ping-yang, LIU Zhan-fang, ZHOU Hong, ZHU Jun, LIU Yao. Application of Biological Mass Spectrometry in Lipidomics Analysis[J]. China Biotechnology, 2023, 43(1): 87-103.
[10] OU Jiang-tao, LUAN Xiao-qi, BIAN Yun-xia, JIANG Qi-cheng, MENG Yu-suo, DONG Hui-zi, WANG Zi-sheng. Multi-omics Analysis of Spiroplasma eriocheiris Non-coding RNAs (ncRNAs) and Their Virulence Targets[J]. China Biotechnology, 2022, 42(11): 163-178.
[11] ZHANG Jie, LIN Bing-feng, XU Ping-cui, WANG Na-ni, CHEN Yu. Serum Metabolomics of Ophiopogon japonicus Extract Against Type 2 Diabetes in Mice[J]. China Biotechnology, 2022, 42(11): 99-108.
[12] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[13] ZHANG Ye,WANG Ji-ping,SU Tian-ming,HE Tie-guang,WANG Jin,ZENG Xiang-yang. Research Progress on Degradation of Lignocellulosic Biomass by Screening Microorganisms[J]. China Biotechnology, 2020, 40(6): 100-105.
[14] JIANG Ji-zhe, PAN Hang, YUE Min, ZHANG Le. The Study of Worldwide Brucella canis of Phylogenetic Groups by Comparative Genomics-based Approaches[J]. China Biotechnology, 2020, 40(3): 38-47.
[15] Ao-shen WU,Xiao-na LIU,Yun-he LIU,Gang LIU,Lei LIU. Application of Second Generation Gene Sequencing Data Management and Big Data Platform in Precision Medicine[J]. China Biotechnology, 2019, 39(2): 101-111.