Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2024, Vol. 44 Issue (1): 98-106    DOI: 10.13523/j.cb.2309023
    
Application of MicroRNA Regulation in Oncolytic Virotherapy and Its Prospects
Canyang ZHAO1(),Yanzhen LIN2,Tong CHENG3,Wei WANG1,***()
1 National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Pulic Health,Xiamen University, Xiamen 361102, China
2 Affiliated Zhongshan Hospital, Xiamen University, Xiamen 361004, China
3 School of Life Sciences, Xiamen University, Xiamen 361102, China
Download: HTML   PDF(1128KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

MicroRNAs (miRNAs) are a type of endogenous, non-coding, single-stranded RNA that specifically regulates post-transcriptional gene expression in eukaryotic cells. In recent years, miRNA regulation has been utilized in the design of oncolytic viruses. By inserting a target sequence of a tissue-specific miRNA that is down-regulated in the tumor into the viral genome, the tissue tropism of the oncolytic virus can be altered, and the anti-tumor activity of the virus can be remained during viral attenuation. Additionally, natural or artificially modified miRNAs can be inserted and expressed in viral genomes to promote viral replication and improve the tumor microenvironment, thereby enhancing the therapeutic effect of oncolytic viruses. This paper reviews and discusses the utilization of miRNA regulation in oncolytic virology, with the aim of providing insights into the optimization of existing oncolytic virotherapy strategies.



Key wordsMicroRNA      Oncolytic virus      Targeted regulation      Virotherapy     
Received: 20 September 2023      Published: 04 February 2024
ZTFLH:  Q789  
Cite this article:

Canyang ZHAO, Yanzhen LIN, Tong CHENG, Wei WANG. Application of MicroRNA Regulation in Oncolytic Virotherapy and Its Prospects. China Biotechnology, 2024, 44(1): 98-106.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2309023     OR     https://manu60.magtech.com.cn/biotech/Y2024/V44/I1/98

组织部位 miRNAs
血液 hsa-miR-486-5p、hsa-miR-451a、hsa-miR-92a-3p、hsa-miR-191-5p
骨骼 hsa-miR-10b-5p、hsa-miR-143-3p、hsa-miR-100-5p、hsa-let-7a-5p、hsa-miR-21-5p、hsa-miR-191-5p、hsa-miR-22-3p
心脏 hsa-miR-1-3p、hsa-miR-143-3p、hsa-miR-133a-3p、hsa-miR-27b-3p、hsa-miR-99a-5p
肝脏 hsa-miR-148a-3p、hsa-miR-22-3p、hsa-miR-122-5p、hsa-miR-143-3p、hsa-miR-21-5p、hsa-miR-192-5p、hsa-miR-101-3p、hsa-let-7a-5p、hsa-miR-10a-5p
hsa-miR-143-3p、hsa-miR-21-5p、hsa-miR-30a-5p、hsa-miR-22-3p、hsa-miR-101-3p、hsa-miR-30a-3p、hsa-miR-10a-5p、hsa-let-7a-5p、hsa-miR-148a-3p、hsa-miR-99b-5p、hsa-let-7b-5p、hsa-miR-103a-3p
hsa-miR-10b-5p、hsa-miR-30a-5p、hsa-miR-143-3p、hsa-miR-10a-5p、hsa-miR-22-3p、hsa-miR-30a-3p、hsa-miR-21-5p、hsa-let-7a-5p、hsa-miR-99b-5p、hsa-miR-26a-5p
胰腺 hsa-miR-21-5p、hsa-miR-143-3p、hsa-miR-22-3p、hsa-miR-148a-3p、hsa-let-7a-5p、hsa-miR-10a-5p、hsa-miR-375-3p、has-miR-216a/b、has-miR-217
大脑 hsa-miR-26a-5p、hsa-miR-181a-5p、hsa-let-7a-5p、hsa-miR-16-5p、hsa-miR-9-5p、hsa-miR-99a-5p、hsa-miR-143-3p、hsa-miR-100-5p、hsa-let-7f-5p、hsa-miR-27b-3p、hsa-miR-22-3p、hsa-miR-128-3p
结肠 hsa-miR-143-3p、hsa-miR-192-5p、hsa-miR-375-3p、hsa-miR-10b-5p、hsa-miR-10a-5p、hsa-let-7b-5p、hsa-miR-92a-3p、hsa-miR-99b-5p、hsa-miR-26a-5p、hsa-let-7a-5p
直肠 hsa-miR-143-3p、hsa-miR-192-5p、hsa-miR-10b-5p、hsa-miR-10a-5p、hsa-miR-21-5p、hsa-miR-26a-5p、hsa-let-7a-5p、hsa-miR-181a-5p
前列腺 hsa-miR-143-3p、hsa-miR-21-5p、hsa-miR-99a-5p、hsa-miR-148a-3p、hsa-miR-26a-5p
子宫内膜 hsa-miR-143-3p、hsa-miR-10b-5p、hsa-let-7a-5p、hsa-miR-21-5p、hsa-miR-10a-5p、hsa-let-7b-5p、hsa-miR-22-3p、hsa-miR-101-3p
膀胱 hsa-miR-143-3p、hsa-miR-21-5p、hsa-miR-22-3p、hsa-miR-10b-5p、hsa-let-7a-5p
肌肉 hsa-miR-1-3p、hsa-miR-133a-3p、hsa-miR-378a-3p、hsa-miR-143-3p、hsa-miR-26a-5p
Table 1 miRNAs enriched in specific tissues of the human body
肿瘤类型 表达下调的miRNA 表达上调的miRNA
头颈癌 miR-195-5p、miR-101-3p、miR-136-3p、miR-145-3p、miR-375 miR-615-3p、miR-503-3p、miR-21-5p、miR-455-3p、miR-93-5p
乳腺癌 Let-7-7c-5p、miR-1-3p、miR-30e-3p、miR-139-5p、miR-486-5p miR-592、miR-21-5p、miR-7-5p、miR-183-3p、miR-3610
肺癌 miR-7641、miR-6788-3p、miR202-3p、miR-6808-3p、miR-433-3p miR-153-5p、miR-301a-5p、miR-33b-p、miR-592、miR-577
胃癌 miR-139-5p、miR-133b、miR-139-3p、miR-145-3p、miR-1-3p miR-21-5p、miR-3662、miR-25-5p、miR-135b-5p、miR-21-3p
结直肠癌 Let-7d-3p、miR-5196-3p、miR-4743-5p、miR-328-3p、miR-139-5p Let-7f-1-3p、miR-590-5p、miR-889-3p、miR-455-5p、miR-18a-5p
膀胱癌 miR-139-3p、miR-1-3p、miR-30a-3p、miR-383-5p、miR-133b Let-7f-2-3p、miR-183-3p、miR-33b-5p、miR-147b、miR-210-5p
肾癌 miR-891a-5b、miR-10b-5p、miR-184、miR-141-3p、miR-145-5p miR-21-5p、miR-7156-5p、miR-21-3p、miR-93-5p、miR-25-3p
Table 2 Tissue-specific expression profiles of miRNAs in different cancers
病毒类型 miRNA 拷贝数 靶器官 插入位置 肿瘤模型 参考文献
柯萨奇病毒
A21型
miR-133、miR-206 2 肌肉 基因组的3'-UTR 骨髓瘤 [22]
miR-133、miR-206 2 肌肉 基因组的5'-UTR 黑色素瘤 [23]
柯萨奇病毒
B3型
miR-375 3 胰腺 基因组的5'-UTR
和3'-UTR
结直肠癌 [24]
miR-34a 4 胰腺 基因组的5'-UTR
和3'-UTR
肺癌 [25]
miR-1、miR-216、
miR-143、miR-145
2~4 心脏、肌肉、胰腺 基因组的5'-UTR 乳腺癌 [26]
门戈病毒 miR-124、miR-133b、
miR-208a
2 神经、心脏 基因组的5'-UTR
和3'-UTR
浆细胞瘤 [27]
森林脑炎病毒 miR-124 6 神经 nsp3和nsp4之间 神经胶质瘤 [30]
麻疹病毒 miR-122、miR-7、miR-148a 3 神经、肝脏、胃肠 H和F的3'-UTR 胰腺癌 [33]
miR-124-3p、miR-125-5p、
miR-7-5p
3~6 神经 N、F、H和L的
3'-UTR
- [34]
miR-148a 3 胃肠 F的3'-UTR 胰腺癌 [35]
水泡性口炎病毒 Let-7 3 神经 M的3'-UTR 黑色素瘤 [40]
miR-125b 4 神经 L的3'-UTR 结直肠癌 [41]
腺病毒 miR-122 3 肝脏 E1A的3'-UTR - [44]
miR-148a、miR-216a 4~8 胰腺、肝脏 E1A的3'-UTR 胰腺癌 [45]
单纯疱疹病毒 miR-124-3p、miR-128-3p、
miR-137-3p、miR-204-5p、
miR-219a-5p、miR-1-3p、
miR-143-3p、miR-122-5p、
miR-126-3p、miR-217-5p
3 神经、心脏、肝脏、
胰腺
ICP4、ICP27、
UL8、ICP34.5的
3'-UTR
结直肠癌、
黑色素瘤
[48]
Table 3 miRNA-detargeted oncolytic viruses
病毒类型 miRNA 靶基因 作用效果 肿瘤模型 参考文献
腺病毒 miR-26b NF-κB 促进病毒复制 前列腺癌 [53]
miR-99b、miR-485 ELF4、MDM2、
KLF8
促进病毒复制 胰腺导管腺癌 [54]
miR-222海绵 miR-222 增强病毒复制
与细胞毒性
胰腺导管腺癌 [56]
水泡性口炎病毒 amiR-4 ARID1A 抑制干扰素通路,
提升溶瘤效果
胰腺导管腺癌、
黑色素瘤
[55]
Table 4 Oncolytic viruses expressing miRNAs to enhance the anti-tumor effect
[1]   Bartel D P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2): 215-233.
doi: 10.1016/j.cell.2009.01.002 pmid: 19167326
[2]   Shang R F, Lee S, Senavirathne G, et al. MicroRNAs in action: biogenesis, function and regulation. Nature Reviews Genetics, 2023, 24(12): 816-833.
doi: 10.1038/s41576-023-00611-y
[3]   Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843-854.
doi: 10.1016/0092-8674(93)90529-y pmid: 8252621
[4]   Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science, 2001, 294(5543): 862-864.
doi: 10.1126/science.1065329 pmid: 11679672
[5]   Liu H Y, Lei C, He Q, et al. Nuclear functions of mammalian microRNAs in gene regulation, immunity and cancer. Molecular Cancer, 2018, 17(1): 64.
doi: 10.1186/s12943-018-0765-5 pmid: 29471827
[6]   Daugaard I, Hansen T B. Biogenesis and function of ago-associated RNAs. Trends in Genetics, 2017, 33(3): 208-219.
doi: S0168-9525(17)30003-3 pmid: 28174021
[7]   Béthune J, Artus-Revel C G, Filipowicz W. Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells. EMBO Reports, 2012, 13(8): 716-723.
doi: 10.1038/embor.2012.82 pmid: 22677978
[8]   Kozomara A, Griffiths-Jones S. MiRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research, 2011, 39(Database issue): D152-D157.
[9]   Kozomara A, Griffiths-Jones S. MiRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 2014, 42(D1): D68-D73.
doi: 10.1093/nar/gkt1181
[10]   Boehm M, Slack F J. MicroRNA control of lifespan and metabolism. Cell Cycle, 2006, 5(8): 837-840.
doi: 10.4161/cc.5.8.2688 pmid: 16627994
[11]   Fabian M R, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annual Review of Biochemistry, 2010, 79: 351-379.
doi: 10.1146/annurev-biochem-060308-103103 pmid: 20533884
[12]   Ye Q, Raese R A, Luo D J, et al. MicroRNA-based discovery of biomarkers, therapeutic targets, and repositioning drugs for breast cancer. Cells, 2023, 12(14): 1917.
doi: 10.3390/cells12141917
[13]   Chang T C, Yu D N, Lee Y S, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 2008, 40(1): 43-50.
doi: 10.1038/ng.2007.30
[14]   Lu J, Getz G, Miska E A, et al. MicroRNA expression profiles classify human cancers. Nature, 2005, 435(7043): 834-838.
doi: 10.1038/nature03702
[15]   Hata A, Lieberman J. Dysregulation of microRNA biogenesis and gene silencing in cancer. Science Signaling, 2015, 8(368): e2005825.
[16]   Kavakiotis I, Alexiou A, Tastsoglou S, et al. DIANA-miTED: a microRNA tissue expression database. Nucleic Acids Research, 2022, 50(D1): D1055-D1061.
[17]   Xu F, Wang Y F, Ling Y C, et al. DbDEMC 3.0: functional exploration of differentially expressed miRNAs in cancers of human and model organisms. Genomics, Proteomics & Bioinformatics, 2022, 20(3): 446-454.
[18]   Kaufman H L, Kohlhapp F J, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nature Reviews Drug Discovery, 2015, 14(9): 642-662.
doi: 10.1038/nrd4663 pmid: 26323545
[19]   Brown B D, Gentner B, Cantore A, et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nature Biotechnology, 2007, 25(12): 1457-1467.
doi: 10.1038/nbt1372 pmid: 18026085
[20]   Geisler A, Hazini A, Heimann L, et al. Coxsackievirus B3-its potential as an oncolytic virus. Viruses, 2021, 13(5): 718.
doi: 10.3390/v13050718
[21]   Nekoua M P, Alidjinou E K, Hober D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nature Reviews Endocrinology, 2022, 18(8): 503-516.
doi: 10.1038/s41574-022-00688-1 pmid: 35650334
[22]   Kelly E J, Hadac E M, Greiner S, et al. Engineering microRNA responsiveness to decrease virus pathogenicity. Nature Medicine, 2008, 14(11): 1278-1283.
doi: 10.1038/nm.1776 pmid: 18953352
[23]   Kelly E J, Hadac E M, Cullen B R, et al. MicroRNA antagonism of the picornaviral life cycle: alternative mechanisms of interference. PLoS Pathogens, 2010, 6(3): e1000820.
doi: 10.1371/journal.ppat.1000820
[24]   Pryshliak M, Hazini A, Knoch K, et al. MiR-375-mediated suppression of engineered coxsackievirus B 3 in pancreatic cells. FEBS Letters, 2020, 594(4): 763-775.
doi: 10.1002/1873-3468.13647 pmid: 31643074
[25]   Jia Y, Miyamoto S, Soda Y, et al. Extremely low organ toxicity and strong antitumor activity of miR-34-regulated oncolytic coxsackievirus B3. Molecular Therapy-Oncolytics, 2019, 12: 246-258.
doi: 10.1016/j.omto.2019.01.003 pmid: 30891489
[26]   Bahreyni A, Liu H T, Mohamud Y, et al. A new miRNA-modified coxsackievirus B 3 inhibits triple negative breast cancer growth with improved safety profile in immunocompetent mice. Cancer Letters, 2022, 548: 215849.
doi: 10.1016/j.canlet.2022.215849
[27]   Ruiz A J, Hadac E M, Nace R A, et al. MicroRNA-detargeted mengovirus for oncolytic virotherapy. Journal of Virology, 2016, 90(8): 4078-4092.
doi: 10.1128/JVI.02810-15 pmid: 26865716
[28]   Penza V, Maroun J W, Nace R A, et al. Polycytidine tract deletion from microRNA-detargeted oncolytic Mengovirus optimizes the therapeutic index in a murine multiple myeloma model. Molecular Therapy-Oncolytics, 2023, 28: 15-30.
doi: 10.1016/j.omto.2022.11.006
[29]   Heikkilä J E, Vähä-Koskela M J V, Ruotsalainen J J, et al. Intravenously administered alphavirus vector VA 7 eradicates orthotopic human glioma xenografts in nude mice. PLoS One, 2010, 5(1): e8603.
doi: 10.1371/journal.pone.0008603
[30]   Ylösmäki E, Martikainen M, Hinkkanen A, et al. Attenuation of semliki forest virus neurovirulence by microRNA-mediated detargeting. Journal of Virology, 2013, 87(1): 335-344.
doi: 10.1128/JVI.01940-12 pmid: 23077310
[31]   Laksono B M, de Vries R D, Duprex W P, et al. Measles pathogenesis, immune suppression and animal models. Current Opinion in Virology, 2020, 41: 31-37.
doi: S1879-6257(20)30011-0 pmid: 32339942
[32]   Dispenzieri A, Tong C, LaPlant B, et al. Phase I trial of systemic administration of Edmonston strain of measles virus genetically engineered to express the sodium iodide symporter in patients with recurrent or refractory multiple myeloma. Leukemia, 2017, 31(12): 2791-2798.
doi: 10.1038/leu.2017.120 pmid: 28439108
[33]   Baertsch M A, Leber M F, Bossow S, et al. MicroRNA-mediated multi-tissue detargeting of oncolytic measles virus. Cancer Gene Therapy, 2014, 21(9): 373-380.
doi: 10.1038/cgt.2014.40 pmid: 25145311
[34]   Leber M F, Baertsch M A, Anker S C, et al. Enhanced control of oncolytic measles virus using microRNA target sites. Molecular Therapy-Oncolytics, 2018, 9: 30-40.
doi: 10.1016/j.omto.2018.04.002 pmid: 29988512
[35]   Singh H M, Leber M F, Bossow S, et al. MicroRNA-sensitive oncolytic measles virus for chemovirotherapy of pancreatic cancer. Molecular Therapy-Oncolytics, 2021, 21: 340-355.
doi: 10.1016/j.omto.2021.04.015 pmid: 34141871
[36]   Drolet B S, Stuart M A, Derner J D. Infection of Melanoplus sanguinipes grasshoppers following ingestion of rangeland plant species harboring vesicular stomatitis virus. Applied and Environmental Microbiology, 2009, 75(10): 3029-3033.
doi: 10.1128/AEM.02368-08
[37]   Stojdl D F, Lichty B, Knowles S, et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nature Medicine, 2000, 6(7): 821-825.
doi: 10.1038/77558 pmid: 10888934
[38]   Shinozaki K, Ebert O, Suriawinata A, et al. Prophylactic alpha interferon treatment increases the therapeutic index of oncolytic vesicular stomatitis virus virotherapy for advanced hepatocellular carcinoma in immune-competent rats. Journal of Virology, 2005, 79(21): 13705-13713.
pmid: 16227290
[39]   Johnson J E, Nasar F, Coleman J W, et al. Neurovirulence properties of recombinant vesicular stomatitis virus vectors in non-human primates. Virology, 2007, 360(1): 36-49.
doi: 10.1016/j.virol.2006.10.026 pmid: 17098273
[40]   Edge R E, Falls T J, Brown C W, et al. A let-7 microRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Molecular Therapy, 2008, 16(8): 1437-1443.
doi: 10.1038/mt.2008.130 pmid: 18560417
[41]   Kelly E J, Nace R, Barber G N, et al. Attenuation of vesicular stomatitis virus encephalitis through microRNA targeting. Journal of Virology, 2010, 84(3): 1550-1562.
doi: 10.1128/JVI.01788-09 pmid: 19906911
[42]   中国临床肿瘤学会免疫治疗专家委员会, 上海市抗癌协会肿瘤生物治疗专业委员会. 基因重组溶瘤腺病毒治疗恶性肿瘤临床应用中国专家共识(2022年版). 中国癌症杂志, 2023, 33(5): 527-550.
doi: 10.19401/j.cnki.1007-3639.2023.05.013
[42]   Chinese Society of Clinical Oncology Immunotherapy Expert Committee, Shanghai Anti-Cancer Association Tumor Biological Therapy Professional Committee. Chinese expert consensus on the clinical application of genetically recombinant oncolytic adenovirus in the treatment of malignant tumors (2022 edition). Chinese Journal of Cancer, 2023, 33(5): 527-50.
doi: 10.19401/j.cnki.1007-3639.2023.05.013
[43]   杨豪, 张绍庚, 杨鹏辉. 溶瘤病毒的免疫学机制及临床研究进展. 生物化学与生物物理进展, 2022, 49(8): 1398-1405.
[43]   Yang H, Zhang S G, Yang P H. Immunologic mechanisms and clinical research progress of oncolytic viruses. Progress in Biochemistry and Biophysics, 2022, 49(8): 1398-1405.
[44]   Ylösmäki E, Hakkarainen T, Hemminki A, et al. Generation of a conditionally replicating adenovirus based on targeted destruction of E1A mRNA by a cell type-specific microRNA. Journal of Virology, 2008, 82(22): 11009-11015.
doi: 10.1128/JVI.01608-08 pmid: 18799589
[45]   Bofill-De Ros X, Gironella M, Fillat C. MiR-148a- and miR-216a-regulated oncolytic adenoviruses targeting pancreatic tumors attenuate tissue damage without perturbation of miRNA activity. Molecular Therapy, 2014, 22(9): 1665-1677.
doi: 10.1038/mt.2014.98 pmid: 24895996
[46]   Dai M H, Zamarin D, Gao S P, et al. Synergistic action of oncolytic herpes simplex virus and radiotherapy in pancreatic cancer cell lines. The British Journal of Srugery, 2010, 97(9): 1385-1394.
[47]   Eager R M, Nemunaitis J. Clinical development directions in oncolytic viral therapy. Cancer Gene Therapy, 2011, 18(5): 305-317.
doi: 10.1038/cgt.2011.7 pmid: 21436867
[48]   Kennedy E M, Farkaly T, Grzesik P, et al. Design of an interferon-resistant oncolytic HSV-1 incorporating redundant safety modalities for improved tolerability. Molecular Therapy-Oncolytics, 2020, 18: 476-490.
doi: 10.1016/j.omto.2020.08.004 pmid: 32953982
[49]   Doench J G, Petersen C P, Sharp P A. SiRNAs can function as miRNAs. Genes & Development, 2003, 17(4): 438-442.
doi: 10.1101/gad.1064703
[50]   Sætrom P, Heale B S E, Snøve O, et al. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Research, 2007, 35(7): 2333-2342.
pmid: 17389647
[51]   Kertesz M, Iovino N, Unnerstall U, et al. The role of site accessibility in microRNA target recognition. Nature Genetics, 2007, 39(10): 1278-1284.
doi: 10.1038/ng2135 pmid: 17893677
[52]   Long D, Lee R, Williams P, et al. Potent effect of target structure on microRNA function. Nature Structural & Molecular Biology, 2007, 14(4): 287-294.
doi: 10.1038/nsmb1226
[53]   Hodzic J, Sie D, Vermeulen A, et al. Functional screening identifies human miRNAs that modulate adenovirus propagation in prostate cancer cells. Human Gene Therapy, 2017, 28(9): 766-780.
doi: 10.1089/hum.2016.143
[54]   Rovira-Rigau M, Raimondi G, Marín M Á, et al. Bioselection reveals miR-99b and miR-485 as enhancers of adenoviral oncolysis in pancreatic cancer. Molecular Therapy, 2019, 27(1): 230-243.
doi: S1525-0016(18)30457-X pmid: 30341009
[55]   Wedge M E, Jennings V A, Crupi M J F, et al. Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nature Communications, 2022, 13(1): 1898.
doi: 10.1038/s41467-022-29526-8
[56]   Raimondi G, Gea-Sorlí S, Otero-Mateo M, et al. Inhibition of miR-222 by oncolytic adenovirus-encoded miRNA sponges promotes viral oncolysis and elicits antitumor effects in pancreatic cancer models. Cancers, 2021, 13(13): 3233.
doi: 10.3390/cancers13133233
[1] HAN Jia, FAN Yue-lei, MAO Kai-yun. Analysis of Oncolytic Virus Market and R&D Pattern[J]. China Biotechnology, 2023, 43(6): 87-101.
[2] ZHU Si-ying, YANG Yang, LI Peng-dong, XUE Yan-ting, SHE Qin, QI Ling, ZHAO Guo-jun, LIAO Bao-jian. MicroRNA Cluster 290-295 Enhances Somatic Cell Reprogramming[J]. China Biotechnology, 2023, 43(4): 1-9.
[3] DENG Si-yu, LIANG Bing, WEI Wei, WANG Meng-na, CAO You-de. Effects of miR-34a-5p on Triple Negative Breast Cancer Cells and Related Mechanisms[J]. China Biotechnology, 2023, 43(1): 18-26.
[4] CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression[J]. China Biotechnology, 2021, 41(5): 8-16.
[5] ZHANG Bao-hui,XIONG Hua-long,ZHANG Tian-ying,YUAN Quan. Research Progress on Vesicular Stomatitis Virus-based Oncolytic Virotherapy[J]. China Biotechnology, 2020, 40(6): 53-62.
[6] Pan-hong ZHANG,Lian-lian LI,Xiu-mei ZHANG,Jia-jun CUI,Yin-jie JIANG. Advances in the Relationship Between microRNA and Chemotherapy Resistance of Lung Cancer[J]. China Biotechnology, 2019, 39(7): 79-84.
[7] SHEN Bing-lei,WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan. Research Progress of Non-coding RNA in Autophagy[J]. China Biotechnology, 2019, 39(12): 56-63.
[8] LUO Jia, SHEN Lin yuan, LI Qiang, LI Xue wei, ZHANG Shun hua, ZHU Li. Research Progress of RNA Editing in Mammal Acting on Non-coding RNA[J]. China Biotechnology, 2016, 36(11): 76-82.
[9] XIN Jing, XU Yin-sheng, ZHANG Fang, SHENG Wang. The Function and Mechanism of MicroRNA-124 in Human Cervical Cancer[J]. China Biotechnology, 2015, 35(10): 13-19.
[10] MAN Chao-lai, TANG Gao-xia, ZHAO Li, LI Feng, ZHEN Xin. DNA Methylation and microRNAs[J]. China Biotechnology, 2014, 34(8): 81-87.
[11] MAN Chao-lai, YANG Mei-ling. Research Progress in Circulating MicroRNAs of Body Fluid[J]. China Biotechnology, 2014, 34(2): 104-108.
[12] MAN Chao-lai, CHANG Yang, TANG Gao-xia, ZHAO Li, LI Feng, ZHEN Xin, MI Xiao-ju. Research Progress of Genetic Adjuvant[J]. China Biotechnology, 2013, 33(7): 112-117.
[13] XU Ying-chen, GUAN Li-dong, ZHOU Jun-nian, ZENG Quan, YUAN Hong-feng, LI Si-ting, GUAN Zhao-xuan, HE Li-juan, NAN Xue, CHEN Lin, YUE Wen, PEI Xue-tao. Isolation and Identification of Liver Cancer Stem Cells and Analysis of Differentially Expressed MicroRNAs[J]. China Biotechnology, 2013, 33(1): 1-7.
[14] DONG Yuan-yuan, LI Hai-yan, LI Xiao-kun, YANG Shu-lin. Bioinformatics Prediction of microRNAs and Targets from Safflower[J]. China Biotechnology, 2012, 32(10): 33-38.
[15] TANG De-ping, MAO Ai-hong, LIAO Shi-qi, XUE Lin-gui, ZHANG Bing-lin. The Types of siRNA Off-target Effects and the Strategies for Mitigation[J]. China Biotechnology, 2012, 32(07): 113-119.