Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2024, Vol. 44 Issue (2/3): 134-141    DOI: 10.13523/j.cb.2308027
    
Research Progress in Protein Corona of Extracellular Vesicles
WANG Shan,CAO Yulin,WU Di,QU Jiao,YU Yali,LI Qiubai**()
Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
Download: HTML   PDF(576KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Extracellular vesicles are natural nanoparticles with a phospholipid bilayer membrane structure released by cells. They play a vital role in various physiological and pathological processes such as cell signaling, tumor development, immune regulation, and rejuvenation during aging. They have immense potential in the diagnosis and treatment of disease. Previous research has shown that the preparation of extracellular vesicles is prone to protein contamination, which limits their research and translational applications in biomarkers and drug delivery. In recent years, some scholars have introduced the concept of “protein corona” to the field of extracellular vesicles, which is proven to be an important structure for synthetic nanoparticles. They propose that the protein corona is an intrinsic component of the extracellular vesicle and significantly influences its biological functionality. This challenges the traditional view of protein contamination and leads to a paradigm shift in extracellular vesicle research. This review provides an overview of the current state of research on the protein corona on the surface of extracellular vesicles. It covers aspects such as the formation process, chemical composition, biological functions, and identification methods of this protein corona. This review may serve as a reference for the further study of extracellular vesicles and their protein corona.



Key wordsExtracellular vesicles      Protein corona      Nanoparticles     
Received: 21 August 2023      Published: 03 April 2024
ZTFLH:  Q816  
Cite this article:

WANG Shan, CAO Yulin, WU Di, QU Jiao, YU Yali, LI Qiubai. Research Progress in Protein Corona of Extracellular Vesicles. China Biotechnology, 2024, 44(2/3): 134-141.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2308027     OR     https://manu60.magtech.com.cn/biotech/Y2024/V44/I2/3/134

Fig.1 The comparison between the traditional EVs model and the EVs corona model
理化性质 鉴定方法 参考文献
结构特征 微流控电阻脉冲传感(MRPS)
极小角度中子散射(VSANS)
[42]
化学组分 质谱分析(MS) [28,32]
EVs-蛋白质相互作用 Uniprot数据库
STRING数据库
[28]
形态特征 共聚焦显微镜(CLSM)
免疫电镜(IEM)
透射电镜(TEM)
[28,31]
Table 1 Main techniques used for the characterization of EVs protein corona
[1]   Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology, 2014, 30: 255-289.
doi: 10.1146/annurev-cellbio-101512-122326 pmid: 25288114
[2]   Zhang X, Zhang H B, Gu J M, et al. Engineered extracellular vesicles for cancer therapy. Advanced Materials, 2021, 33(14): e2005709.
[3]   Pourali G, Zafari N, Fiuji H, et al. Extracellular vesicles: emerging mediators of cell communication in gastrointestinal cancers exhibiting metabolic abnormalities. Cytokine & Growth Factor Reviews, 2023, 73: 101-113.
[4]   Lei Q, Gao F, Liu T, et al. Extracellular vesicles deposit PCNA to rejuvenate aged bone marrow-derived mesenchymal stem cells and slow age-related degeneration. Science Translational Medicine, 2021, 13(578): eaaz8697.
[5]   Hansen A S, Jensen L S, Gammelgaard K R, et al. T-cell derived extracellular vesicles prime macrophages for improved STING based cancer immunotherapy. Journal of Extracellular Vesicles, 2023, 12(8): e12350.
[6]   Peng Y Q, Deng X H, Xu Z B, et al. Mesenchymal stromal cells and their small extracellular vesicles in allergic diseases: from immunomodulation to therapy. European Journal of Immunology, 2023, 53(10): e2149510.
[7]   Sódar B W, Kittel Á, Pálóczi K, et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Scientific Reports, 2016, 6: 24316.
doi: 10.1038/srep24316 pmid: 27087061
[8]   Simonsen J B. What are we looking at? extracellular vesicles, lipoproteins, or both? Circulation Research, 2017, 121(8): 920-922.
doi: 10.1161/CIRCRESAHA.117.311767 pmid: 28963190
[9]   Karimi N, Cvjetkovic A, Jang S C, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cellular and Molecular Life Sciences, 2018, 75(15): 2873-2886.
doi: 10.1007/s00018-018-2773-4 pmid: 29441425
[10]   Théry C, Witwer K W, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7(1): 1535750.
[11]   Onishchenko N, Tretiakova D, Vodovozova E. Spotlight on the protein corona of liposomes. Acta Biomaterialia, 2021, 134: 57-78.
doi: 10.1016/j.actbio.2021.07.074 pmid: 34364016
[12]   Wang W H, Huang Z W, Li Y B, et al. Impact of particle size and pH on protein corona formation of solid lipid nanoparticles: a proof-of-concept study. Acta Pharmaceutica Sinica B, 2021, 11(4): 1030-1046.
doi: 10.1016/j.apsb.2020.10.023 pmid: 33996415
[13]   Ezzat K, Pernemalm M, Pålsson S, et al. The viral protein corona directs viral pathogenesis and amyloid aggregation. Nature Communications, 2019, 10: 2331.
doi: 10.1038/s41467-019-10192-2 pmid: 31133680
[14]   Tang H, Zhang Y, Yang T, et al. Cholesterol modulates the physiological response to nanoparticles by changing the composition of protein corona. Nature Nanotechnology, 2023, 18: 1067-1077.
doi: 10.1038/s41565-023-01455-7 pmid: 37537273
[15]   Mahmoudi M, Landry M P, Moore A, et al. The protein corona from nanomedicine to environmental science. Nature Reviews Materials, 2023, 8: 422-438.
doi: 10.1038/s41578-023-00552-2
[16]   褚宇琦, 陆飞妃, 刘洋, 等. 蛋白冠与纳米粒子的相互作用. 中国生物工程杂志, 2020, 40(4): 78-83.
[16]   Chu Y Q, Lu F F, Liu Y, et al. Interaction between protein Corona and nanoparticles. China Biotechnology, 2020, 40(4): 78-83.
[17]   Buzás E I, Tóth E Á, Sódar B W, et al. Molecular interactions at the surface of extracellular vesicles. Seminars in Immunopathology, 2018, 40(5): 453-464.
doi: 10.1007/s00281-018-0682-0 pmid: 29663027
[18]   Santucci L, Bruschi M, Del Zotto G, et al. Biological surface properties in extracellular vesicles and their effect on cargo proteins. Scientific Reports, 2019, 9: 13048.
doi: 10.1038/s41598-019-47598-3 pmid: 31506490
[19]   Meneghetti M C Z, Hughes A J, Rudd T R, et al. Heparan sulfate and heparin interactions with proteins. Journal of the Royal Society, Interface, 2015, 12(110): 0589.
[20]   Sung B H, Ketova T, Hoshino D, et al. Directional cell movement through tissues is controlled by exosome secretion. Nature Communications, 2015, 6: 7164.
doi: 10.1038/ncomms8164 pmid: 25968605
[21]   van Niel G, Bergam P, Di Cicco A, et al. Apolipoprotein E regulates amyloid formation within endosomes of pigment cells. Cell Reports, 2015, 13(1): 43-51.
doi: S2211-1247(15)00954-7 pmid: 26387950
[22]   Buzas E I. Opportunities and challenges in studying the extracellular vesicle corona. Nature Cell Biology, 2022, 24: 1322-1325.
doi: 10.1038/s41556-022-00983-z
[23]   Solvik T A, Nguyen T A, Lin Y H T, et al. Secretory autophagy maintains proteostasis upon lysosome inhibition. The Journal of Cell Biology, 2022, 221(6): e202110151.
[24]   Palviainen M, Saraswat M, Varga Z, et al. Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo-Implications for biomarker discovery. PLoS One, 2020, 15(8): e0236439.
[25]   Heidarzadeh M, Zarebkohan A, Rahbarghazi R, et al. Protein corona and exosomes: new challenges and prospects. Cell Communication and Signaling, 2023, 21(1): 64.
[26]   Ahsan S M, Rao C M, Ahmad M F. Nanoparticle-protein interaction: the significance and role of protein corona. Advances in Experimental Medicine and Biology, 2018, 1048: 175-198.
doi: 10.1007/978-3-319-72041-8_11 pmid: 29453539
[27]   Pederzoli F, Tosi G, Vandelli M A, et al. Protein corona and nanoparticles: how can we investigate on? WIREs Nanomedicine and Nanobiotechnology, 2017, 9(6): e1467.
[28]   Tóth E Á, Turiák L, Visnovitz T, et al. Formation of a protein corona on the surface of extracellular vesicles in blood plasma. Journal of Extracellular Vesicles, 2021, 10(11): e12140.
doi: 10.1002/jev2.v10.11
[29]   吕鹏. 胞外囊泡作为纳米载体用于靶向给药的初步研究与应用. 厦门: 厦门大学, 2019.
[29]   Lv P. Preliminary study and application of extracellular vesicles as nanocarriers for targeted drug delivery. Xiamen: Xiamen University, 2019.
[30]   Yerneni S S, Solomon T, Smith J, et al. Radioiodination of extravesicular surface constituents to study the biocorona, cell trafficking and storage stability of extracellular vesicles. Biochimica et Biophysica Acta (BBA) - General Subjects, 2022, 1866(2): 130069.
[31]   Wolf M, Poupardin R W, Ebner-Peking P, et al. A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation. Journal of Extracellular Vesicles, 2022, 11(4): e12207.
doi: 10.1002/jev2.v11.4
[32]   Gomes F G, Andrade A C, Wolf M, et al. Synergy of human platelet-derived extracellular vesicles with secretome proteins promotes regenerative functions. Biomedicines, 2022, 10(2): 238.
[33]   Witwer K W, Wolfram J. Extracellular vesicles versus synthetic nanoparticles for drug delivery. Nature Reviews Materials, 2021, 6: 103-106.
doi: 10.1038/s41578-020-00277-6 pmid: 36117545
[34]   Busatto S, Yang Y B, Walker S A, et al. Brain metastases-derived extracellular vesicles induce binding and aggregation of low-density lipoprotein. Journal of Nanobiotechnology, 2020, 18(1): 162.
[35]   Németh A, Orgovan N, Sódar B W, et al. Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. Scientific Reports, 2017, 7: 8202.
doi: 10.1038/s41598-017-08392-1 pmid: 28811610
[36]   Vrablova V, Kosutova N, Blsakova A, et al. Glycosylation in extracellular vesicles: isolation, characterization, composition, analysis and clinical applications. Biotechnology Advances, 2023, 67: 108196.
doi: 10.1016/j.biotechadv.2023.108196
[37]   Carrillo-Rodríguez P, Robles-Guirado J Á, Cruz-Palomares A, et al. Extracellular vesicles from pristane-treated CD38-deficient mice express an anti-inflammatory neutrophil protein signature, which reflects the mild lupus severity elicited in these mice. Frontiers in Immunology, 2022, 13: 1013236.
doi: 10.3389/fimmu.2022.1013236
[38]   Skliar M, Chernyshev V S, Belnap D M, et al. Membrane proteins significantly restrict exosome mobility. Biochemical and Biophysical Research Communications, 2018, 501(4): 1055-1059.
doi: S0006-291X(18)31170-7 pmid: 29777705
[39]   Monguió-Tortajada M, Gálvez-Montón C, Bayes-Genis A, et al. Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography. Cellular and Molecular Life Sciences, 2019, 76(12): 2369-2382.
doi: 10.1007/s00018-019-03071-y pmid: 30891621
[40]   Kristensen K, Münter R, Kempen P J, et al. Isolation methods commonly used to study the liposomal protein corona suffer from contamination issues. Acta Biomaterialia, 2021, 130: 460-472.
doi: 10.1016/j.actbio.2021.06.008 pmid: 34116227
[41]   Mahmoudi M. The need for improved methodology in protein corona analysis. Nature Communications, 2022, 13: 49.
doi: 10.1038/s41467-021-27643-4 pmid: 35013179
[42]   Varga Z, Fehér B, Kitka D, et al. Size measurement of extracellular vesicles and synthetic liposomes: the impact of the hydration shell and the protein Corona. Colloids and Surfaces B: Biointerfaces, 2020, 192: 111053.
doi: 10.1016/j.colsurfb.2020.111053
[1] WANG Ze-hua, ZHANG Li-yun, MA Chun-yan. Research Progress on the Role of Mesenchymal Stem Cell Extracellular Vesicles in Lung Diseases[J]. China Biotechnology, 2023, 43(5): 76-84.
[2] MA Pin-pin, XIONG Xiang-yuan. Polymeric Nanomaterials Used in Oral Insulin Delivery Systems[J]. China Biotechnology, 2023, 43(2/3): 43-53.
[3] Nian-gui CAI, Xin CHEN, Qing-yuan ZHANG, Hao-nan DI, Xiao-zhen ZHAN, Jun-yan CHEN, Hao CHEN, Xiao-mei YAN. Exploring the Nanoworld: Development and Single-Particle-Level Characterization of Nano-flow Cytometry Technology[J]. China Biotechnology, 2023, 43(12): 1-13.
[4] JIN Zhe-tong,RUI Xue,JIANG Hou-zhe,WANG Jing-jing,CHEN Yu-gen. Research Progress of Non-viral Vector Delivery System for mRNA Vaccines[J]. China Biotechnology, 2022, 42(9): 58-66.
[5] HUANG Ji-an,LI Wan-meng,LIU Wei,QI Zi-tong,ZHAO Liang. Protective Effects of Copper Nanoparticles Against the Neurovascular Unit after Ischemic Stroke[J]. China Biotechnology, 2022, 42(12): 1-11.
[6] LI Jia-xin,ZHANG Zheng,LIU He,YANG Qing,LV Cheng-zhi,YANG Jun. Preparation and Drug Release Properties of Keratin-loaded Nanoparticles[J]. China Biotechnology, 2021, 41(8): 8-16.
[7] CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity[J]. China Biotechnology, 2020, 40(9): 18-27.
[8] YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System[J]. China Biotechnology, 2020, 40(7): 70-81.
[9] CHU Yu-qi,LU Fei-fei,LIU Yang,HE Fang,WANG Da-zhuang,CHEN Li-jiang. Interaction between Protein Corona and Nanoparticles[J]. China Biotechnology, 2020, 40(4): 78-83.
[10] Yan LIU,Peng DAI,Yun-feng ZHU. Research Progress of Relationship between Exosomes and Autophagosomes[J]. China Biotechnology, 2019, 39(6): 78-83.
[11] FANG Yuan,ZHANG Tong-wei,CAO Chang-qian,TIAN Jie-sheng,LIN Wei. Diversity and Applications of Magnetotactic Bacteria[J]. China Biotechnology, 2019, 39(12): 73-82.
[12] Fang-xu WANG,Yu-ling CHEN,Du-yan GENG,Chuan-fang CHEN. Research Progress on Biomedical Applications of Magnetotactic Bacteria and the Biosynthetic Magnetosomes[J]. China Biotechnology, 2018, 38(9): 74-80.
[13] CHEN Xiao-li, ZOU Ming-yuan, XIE Xin, WANG Sheng-yu, WU Ting, SU Jin-hua. Construction of a Neotype Controllability Magnetic Targeting Restructuring Truncated Tissue Factor[J]. China Biotechnology, 2017, 37(9): 60-64.
[14] XIN Lin, YANG Wei-feng, ZHANG Hou-ting, LI Yi-fan. Preparation of Folic Acid/chitosan-Prdx6 shRNA Nanoparticles and Its Anti-carcinoma Effect on Gastric Cancer Cell Proliferation[J]. China Biotechnology, 2017, 37(1): 7-13.
[15] WU Jun, YAN Xin, SHAO Rong, DUAN Jing-hua. Study of Co-encapsulated Doxorubicin and Curcumin Poly(butyl cyanoacrylate) Nanoparticles and Reversion of Multidrug Resistance in MCF/ADR Cell Line[J]. China Biotechnology, 2013, 33(5): 35-43.