Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2024, Vol. 44 Issue (2/3): 142-152    DOI: 10.13523/j.cb.2308022
    
Current Status and Prospects of Cellular Immunotherapy Vector Technology
LIU Xiuying1,LIU Jingjing1,CUI Xinming1,YU Mengyuan1,SHI Yuanyuan1,2,WANG Jianxun1,2,**()
1 College of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
2 Shenzhen Cell Valley Biopharmaceutical Co., Ltd, Shenzhen 518000, China
Download: HTML   PDF(1036KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In recent years, China’s cellular immunotherapy has developed rapidly, catching up from zero to the international level of excellence. Behind the booming development of cellular immunotherapy, the support of vector technology for gene delivery is indispensable. As a medium for introducing genes into target cells and enabling their expression, vector technology is also one of the major bottlenecks in the development of the industry in terms of how to carry out gene transfer safely and efficiently. By summarizing the current status of the development of vector technology for major applications in the field of cell therapy and comparing the industrialized production process of already marketed products, we hope to provide a reference for the further development of vector technology.



Key wordsCellular immunotherapy      Gene delivery vectors      Industrial production     
Received: 15 August 2023      Published: 03 April 2024
ZTFLH:  Q813  
Cite this article:

LIU Xiuying, LIU Jingjing, CUI Xinming, YU Mengyuan, SHI Yuanyuan, WANG Jianxun. Current Status and Prospects of Cellular Immunotherapy Vector Technology. China Biotechnology, 2024, 44(2/3): 142-152.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2308022     OR     https://manu60.magtech.com.cn/biotech/Y2024/V44/I2/3/142

Fig.1 Process of cellular immunotherapy
代数 主要产品 特点
第一代 淋巴因子激活的杀伤细胞疗法(LAK) 非特异性,广谱杀伤能力
第二代 细胞因子诱导的杀伤细胞疗法(CIK)、肿瘤浸润淋巴细胞(TIL) 非特异性,广谱杀伤能力
第三代 细胞因子诱导的杀伤细胞-树突状细胞混合疗法(DC-CIK) 非特异性,混合培养能够增强NKT的广谱杀伤能力
第四代 嵌合抗原受体T细胞、NK细胞或巨噬细胞治疗(CAR-T、CAR-NK、CAR-M),T细胞受体嵌合T细胞治疗(TCR-T),树突状细胞疗法(DC-based immunotherapy) 特异性,绕过了抗原呈递过程,直接靶向性杀伤高表达靶抗原的细胞或组织,能够在体内长期存活,或能够直接诱导多种细胞进行免疫应答
Table 1 Development of cellular immunotherapy
上市时间 商品名 靶点 载体
2017年8月 Kymriah CD19 慢病毒载体
2017年10月 Yescarta CD19 逆转录病毒载体
2020年7月 Tecartus CD19 逆转录病毒载体
2021年2月 Breyanzi CD19 慢病毒载体
2021年3月 Abecma BCMA 慢病毒载体
2021年6月 奕凯达 CD19 逆转录病毒载体
2021年9月 倍诺达 CD19 慢病毒载体
2022年2月 Carvykti BCMA 慢病毒载体
2023年6月 福可苏 BCMA 慢病毒载体
Table 2 Information on listed CAR-T products (China, USA)
Fig.2 Yescarta and Kymriah global sales over the last five years
Fig.3 Sales of Ekeda and Benevoda in China, 2022-2023
Fig.4 Flow of industrial packaging of lentiviral and retroviral vectors
病毒载体 慢病毒载体 逆转录病毒载体
病毒颗粒大小 80~120 nm 80~100 nm
基因组 RNA RNA
包装所需质粒数量 1个表达质粒和2~3个包装质粒 1个表达质粒
包装所需质粒规模 毫克级 微克级
包装方式 表达质粒和包装质粒共转染293T细胞以获得含有慢病毒载体颗粒的上清液 表达质粒转染含有包装蛋白质的瞬转包装细胞以获得含有病毒的上清液,感染能够稳转的包装细胞,最终获得含有逆转录病毒载体颗粒的上清液
病毒纯化 必需(核酸、蛋白质) 可选(蛋白质)
病毒浓缩 必需 可选
病毒滴度 浓缩后可达108~109 TU/mL 106~107 TU/mL,浓缩后可达108~109 TU/mL
免疫原性 低-中 低-中
整合方式 随机并稳定整合 随机并稳定整合
一般整合位点 基因内 基因间
产量 低(30~50人份/批) 高(可达1 000人份/批)
成本 较高 较低
感染细胞状态 分裂期和非分裂期 分裂期
表达维持时间 稳定表达 稳定表达
表达丰度 高水平 高水平
开始表达时间 较慢,2~4天 较快,1~2天
Table 3 Comparison of lentiviral and retroviral vectors
[1]   Sengupta R, Honey K. AACR cancer progress report 2019:transforming lives through innovative cancer science. Clinical Cancer Research, 2019, 25(18): 5431.
[2]   Bashor C J, Hilton I B, Bandukwala H, et al. Engineering the next generation of cell-based therapeutics. Nature Reviews Drug Discovery, 2022, 21: 655-675.
doi: 10.1038/s41573-022-00476-6 pmid: 35637318
[3]   Finkelstein D M, Miller R G. Cell surface recognition determinants involved in triggering the lymphokine activated killer cell phenomenon: enhanced killing of modified “anti-self” targets by varying LAK culture conditions. The Journal of Otolaryngology, 1990, 19(5): 294-298.
[4]   Doudna J A. The promise and challenge of therapeutic genome editing. Nature, 2020, 578: 229-236.
doi: 10.1038/s41586-020-1978-5
[5]   Vile R G, Tuszynski A, Castleden S. Retroviral vectors. From laboratory tools to molecular medicine. Molecular Biotechnology, 1996, 5(2): 139-158.
pmid: 8734426
[6]   Anton G. Retroviral vectors. Revue Roumaine De Virologie, 1994, 45(3-4): 193-202.
pmid: 7619740
[7]   Vargiu L, Rodriguez-Tomé P, Sperber G O, et al. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology, 2016, 13(1): 7.
[8]   Pornillos O, Ganser-Pornillos B K. Maturation of retroviruses. Current Opinion in Virology, 2019, 36: 47-55.
doi: S1879-6257(19)30022-7 pmid: 31185449
[9]   徐钤, 贺新军. 用于基因转移的逆转录病毒及其载体. 生物技术通讯, 1994, 5(4): 169-171.
doi: 10.1007/BF00131897
[9]   Xu Q, He X J. Retrovirus for gene transfer and its vector. Letters in Biotechnology, 1994, 5(4): 169-171.
doi: 10.1007/BF00131897
[10]   Cornetta K, Pollok K E, Miller A D. Retroviral vectors for gene transfer. CSH Protocols, 2008, 2008: pdb.top29.
[11]   Cornetta K, Pollok K E, Miller A D. Retroviral vector production by transient transfection. CSH Protocols, 2008, 2008: pdb.prot4881.
[12]   Cornetta K, Pollok K E, Miller A D. Generation of stable vector-producing cells for retroviral vectors. CSH Protocols, 2008, 2008: pdb.prot4882.
[13]   Dubensky T W Jr, Sauter S L. Generation of retroviral packaging and producer cell lines for large-scale vector production with improved safety and titer. Methods in Molecular Medicine, 2003, 76: 309-330.
pmid: 12526171
[14]   Herbst F, Ball C R, Zavidij O, et al. 10-year stability of clinical-grade serum-free γ-retroviral vector-containing medium. Gene Therapy, 2011, 18(2): 210-212.
doi: 10.1038/gt.2010.126 pmid: 21068779
[15]   Escors D, Breckpot K. Lentiviral vectors in gene therapy: their current status and future potential. Archivum Immunologiae et Therapiae Experimentalis, 2010, 58(2): 107-119.
doi: 10.1007/s00005-010-0063-4 pmid: 20143172
[16]   赵晓煜, 徐祺玲, 赵晓东, 等. 基因治疗慢病毒载体的转导增强策略. 中国生物工程杂志, 2021, 41(8): 52-58.
[16]   Zhao X Y, Xu Q L, Zhao X D, et al. Enhancing lentiviral vector transduction efficiency for facilitating gene therapy. China Biotechnology, 2021, 41(8): 52-58.
[17]   Wang X Y, Ma C C, Rodríguez Labrada R, et al. Recent advances in lentiviral vectors for gene therapy. Science China Life Sciences, 2021, 64(11): 1842-1857.
doi: 10.1007/s11427-021-1952-5
[18]   Perry C, Rayat A C M E. Lentiviral vector bioprocessing. Viruses, 2021, 13(2): 268.
[19]   Milone M C, O’Doherty U. Clinical use of lentiviral vectors. Leukemia, 2018, 32: 1529-1541.
doi: 10.1038/s41375-018-0106-0 pmid: 29654266
[20]   Tiscornia G, Singer O, Verma I M. Production and purification of lentiviral vectors. Nature Protocols, 2006, 1: 241-245.
doi: 10.1038/nprot.2006.37 pmid: 17406239
[21]   Watanabe M, Nishikawaji Y, Kawakami H, et al. Adenovirus biology, recombinant adenovirus, and adenovirus usage in gene therapy. Viruses, 2021, 13(12): 2502.
[22]   Kulanayake S, Tikoo S K. Adenovirus core proteins: structure and function. Viruses, 2021, 13(3): 388.
[23]   Syyam A, Nawaz A, Ijaz A, et al. Adenovirus vector system: construction, history and therapeutic applications. BioTechniques, 2022, 73(6): 297-305.
doi: 10.2144/btn-2022-0051 pmid: 36475496
[24]   Gebre M S, Brito L A, Tostanoski L H, et al. Novel approaches for vaccine development. Cell, 2021, 184(6): 1589-1603.
doi: 10.1016/j.cell.2021.02.030 pmid: 33740454
[25]   Lusky M. Good manufacturing practice production of adenoviral vectors for clinical trials. Human Gene Therapy, 2005, 16(3): 281-291.
doi: 10.1089/hum.2005.16.281
[26]   Sun W M, Shi Q L, Zhang H Y, et al. Advances in the techniques and methodologies of cancer gene therapy. Discovery Medicine, 2019, 27(146): 45-55.
pmid: 30721651
[27]   Sallard E, Zhang W L, Aydin M, et al. The adenovirus vector platform: novel insights into rational vector design and lessons learned from the COVID-19 vaccine. Viruses, 2023, 15(1): 204.
[28]   Guo X J, Sun Y Y, Chen J, et al. Restriction-assembly: a solution to construct novel adenovirus vector. Viruses, 2022, 14(3): 546.
[29]   Silva A C, Peixoto C, Lucas T, et al. Adenovirus vector production and purification. Current Gene Therapy, 2010, 10(6): 437-455.
pmid: 21054247
[30]   武志杰, 马文豪, 董哲岳, 等. AAV载体介导的蓬佩病模型小鼠体内基因治疗研究. 中国生物工程杂志, 2022, 42(7): 24-34.
[30]   Wu Z J, Ma W H, Dong Z Y, et al. AAV vector mediated gene therapy in pompe model mice. China Biotechnology, 2022, 42(7): 24-34.
[31]   Meyer N L, Chapman M S. Adeno-associated virus (AAV) cell entry: structural insights. Trends in Microbiology, 2022, 30(5): 432-451.
doi: 10.1016/j.tim.2021.09.005
[32]   Naso M F, Tomkowicz B, Perry W L, et al. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs, 2017, 31(4): 317-334.
doi: 10.1007/s40259-017-0234-5 pmid: 28669112
[33]   Zengel J, Carette J E. Structural and cellular biology of adeno-associated virus attachment and entry. Advances in Virus Research, 2020, 106: 39-84.
doi: S0065-3527(20)30002-6 pmid: 32327148
[34]   Chen Y H, Keiser M S, Davidson B L. Adeno-associated virus production, purification, and titering. Current Protocols in Mouse Biology, 2018, 8(4): e56.
[35]   Li C W, Samulski R J. Engineering adeno-associated virus vectors for gene therapy. Nature Reviews Genetics, 2020, 21: 255-272.
doi: 10.1038/s41576-019-0205-4 pmid: 32042148
[36]   Large E E, Silveria M A, Zane G M, et al. Adeno-associated virus (AAV) gene delivery: dissecting molecular interactions upon cell entry. Viruses, 2021, 13(7): 1336.
[37]   Aponte-Ubillus J J, Barajas D, Peltier J, et al. Molecular design for recombinant adeno-associated virus (rAAV) vector production. Applied Microbiology and Biotechnology, 2018, 102(3): 1045-1054.
doi: 10.1007/s00253-017-8670-1 pmid: 29204900
[38]   Wang D, Tai P W L, Gao G P. Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery, 2019, 18: 358-378.
doi: 10.1038/s41573-019-0012-9 pmid: 30710128
[39]   Nishikawa M, Takakura Y, Hashida M. Theoretical considerations involving the pharmacokinetics of plasmid DNA. Advanced Drug Delivery Reviews, 2005, 57(5): 675-688.
pmid: 15757754
[40]   李婉迪, 赵振民. 非病毒载体在基因治疗中的研究进展. 新乡医学院学报, 2016, 33(8): 731-734.
[40]   Li W D, Zhao Z M. Research progress of non-viral vectors in gene therapy. Journal of Xinxiang Medical University, 2016, 33(8): 731-734.
[41]   李月, 孙景鑫, 孙丹丹, 等. 非病毒基因载体脂质-聚阳离子复合物的研究进展. 吉林医药学院学报, 2021, 42(2): 132-134.
[41]   Li Y, Sun J X, Sun D D, et al. Research progress of non-viral gene carrier lipid polycation complexes. Journal of Jilin Medical University, 2021, 42(2): 132-134.
[42]   Sunshine J C, Bishop C J, Green J J. Advances in polymeric and inorganic vectors for nonviral nucleic acid delivery. Therapeutic Delivery, 2011, 2(4): 493-521.
doi: 10.4155/tde.11.14 pmid: 22826857
[43]   Uthaman S, Moon M J, Lee D, et al. Di-sulfide linked polyethylenimine coated gold nanoparticles as a non-viral gene delivery agent in NIH-3T 3 mouse embryonic fibroblast. Journal of Nanoscience and Nanotechnology, 2015, 15(10): 7895-7899.
pmid: 26726436
[44]   彭子艾, 李丹丹, 夏澳运, 等. 磁性纳米颗粒负载质粒DNA的研究. 华南农业大学学报, 2020, 41(1): 78-82.
[44]   Peng Z A, Li D D, Xia A Y, et al. Study on magnetic nanoparticle loading plasmid DNA. Journal of South China Agricultural University, 2020, 41(1): 78-82.
[45]   吴飞龙, 孔庆磊, 蔡松旺, 等. CD147单抗介导的基因治疗纳米颗粒的肺癌细胞靶向性研究. 中国病理生理杂志, 2016, 32(9): 1562-1567.
[45]   Wu F L, Kong Q L, Cai S W, et al. CD147 monoclonal antibody-mediated nanoparticles for gene therapy to target lung cancer cells. Chinese Journal of Pathophysiology, 2016, 32(9): 1562-1567.
[46]   徐建昌, 王晞. 非病毒载体作用机制及在心血管疾病基因治疗中的应用研究进展. 山东医药, 2021, 61(30): 97-100.
[46]   Xu J C, Wang X. Research progress on the mechanism of non-viral vector and its application in gene therapy of cardiovascular diseases. Shandong Medical Journal, 2021, 61(30): 97-100.
[47]   Ivics Z, Izsvak Z, Minter A, et al. Identification of functional domains and evolution of Tc1-like transposable elements. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(10): 5008-5013.
[48]   Ivics Z, Hackett P B, Plasterk R H, et al. Molecular reconstruction of Sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell, 1997, 91(4): 501-510.
doi: 10.1016/s0092-8674(00)80436-5 pmid: 9390559
[49]   Izsvák Z, Ivics Z, Plasterk R H. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. Journal of Molecular Biology, 2000, 302(1): 93-102.
doi: 10.1006/jmbi.2000.4047 pmid: 10964563
[50]   Kawakami K, Largaespada D A, Ivics Z. Transposons As tools for functional genomics in vertebrate models. Trends in Genetics, 2017, 33(11): 784-801.
doi: S0168-9525(17)30123-3 pmid: 28888423
[51]   Amberger M, Ivics Z. Latest advances for the sleeping beauty transposon system: 23 years of insomnia but prettier than ever: refinement and recent innovations of the sleeping beauty transposon system enabling novel, nonviral genetic engineering applications. BioEssays, 2020, 42(11): e2000136.
[52]   Fraser M J, Smith G E, Summers M D. Acquisition of host cell DNA sequences by baculoviruses: relationship between host DNA insertions and FP mutants of Autographa californica and Galleria mellonella nuclear polyhedrosis viruses. Journal of Virology, 1983, 47(2): 287-300.
doi: 10.1128/JVI.47.2.287-300.1983 pmid: 16789244
[53]   Zhao S, Jiang E Z, Chen S S, et al. PiggyBac transposon vectors: the tools of the human gene encoding. Translational Lung Cancer Research, 2016, 5(1): 120-125.
doi: 10.3978/j.issn.2218-6751.2016.01.05 pmid: 26958506
[54]   岳冉, 刘子洋, 郑岩, 等. 纳米载体介导的PiggyBac转座子制备CAR-NK细胞. 中国肿瘤生物治疗杂志, 2020, 27(2): 109-114.
[54]   Yue R, Liu Z Y, Zheng Y, et al. Nanocarrier-mediated PiggyBac transposon system for preparation of CAR-NK cells. Chinese Journal of Cancer Biotherapy, 2020, 27(2): 109-114.
[55]   Dolnikov A, Shen S, Klamer G, et al. Antileukemic potency of CD19-specific T cells against chemoresistant pediatric acute lymphoblastic leukemia. Experimental Hematology, 2015, 43(12): 1001-1014.e5.
doi: 10.1016/j.exphem.2015.08.006 pmid: 26384559
[56]   国家药典委员会. 中华人民共和国药典-三部:2020年版. 北京: 中国医药科技出版社, 2020.
[56]   Chinese Pharmacopoeia Commission. People’s Republic of China (PRC) pharmacopoeia-part III:2020 edition. Beijing: China Medical Science Press, 2020.
[57]   国家药品监督管理局. 总局关于发布细胞治疗产品研究与评价技术指导原则的通告(2017年第216号). [2023-08-01]. https://www.nmpa.gov.cn/ylqx/ylqxggtg/ylqxzhdyz/20171222145101557.html.
[57]   National Medical Products Administration. Notice of the general administration of the People’s Republic of China on issuing the technical guidelines for the research and evaluation of cell therapy products (2017 No. 216). [2023-08-01]. https://www.nmpa.gov.cn/ylqx/ylqxggtg/ylqxzhdyz/20171222145101557.html.
[58]   国家药品监督管理局药品审评中心. 国家药监局药审中心关于发布《免疫细胞治疗产品药学研究与评价技术指导原则(试行)》的通告(2022年第30号). [2023-08-01]. https://www.cde.org.cn/main/news/viewInfoCommon/0584963a84e01bb4d83022f559d22144 Center For Drug Evaluation, NMPA. Circular of the drug approval center of the State Food and Drug Administration on Issuing the guiding principles for pharmaceutical research and evaluation of immune cell therapy products (Trial) (No. 30, 2022). [2023-08-01].
[58]   Center For Drug Evaluation, NMPA. Circular of the drug approval center of the State Food and Drug Administration on Issuing the guiding principles for pharmaceutical research and evaluation of immune cell therapy products (Trial) (No. 30, 2022). [2023-08-01]. https://www.cde.org.cn/main/news/viewInfoCommon/0584963a84e01bb4d83022f559d22144
[59]   国家药典委员会. 中华人民共和国药典-一部:2020年版. 北京: 中国医药科技出版社, 2020.
[59]   Chinese Pharmacopoeia Commission. People’s republic of China (PRC) pharmacopoeia-part I:2020 edition. Beijing: China Medical Science Press, 2020.
[60]   Holohan D R, Lee J C, Bluestone J A. Shifting the evolving CAR T cell platform into higher gear. Cancer Cell, 2015, 28(4): 401-402.
doi: S1535-6108(15)00345-1 pmid: 26461084
[61]   Bari R, Granzin M, Tsang K S, et al. A distinct subset of highly proliferative and lentiviral vector (LV)-transducible NK cells define a readily engineered subset for adoptive cellular therapy. Frontiers in Immunology, 2019, 10: 2001.
doi: 10.3389/fimmu.2019.02001 pmid: 31507603
[62]   Chavez M, Rane D A, Chen X Y, et al. Stable expression of large transgenes via the knock-in of an integrase-deficient lentivirus. Nature Biomedical Engineering, 2023, 7: 661-671.
doi: 10.1038/s41551-023-01037-x pmid: 37127707
[63]   Zhang J Q, Hu Y X, Yang J X, et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature, 2022, 609: 369-374.
doi: 10.1038/s41586-022-05140-y
[1] ZHANG Yao,QIU Xiao-man,SUN Hao,GUO Lei,HONG Hou-sheng. The Industrial Applications of Saccharomyces cerevisiae[J]. China Biotechnology, 2022, 42(1/2): 26-36.
[2] ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao. Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast[J]. China Biotechnology, 2020, 40(8): 74-83.
[3] PAN Tong-tong,CHEN Yong-ping. Research Progress of Key Techniques for Severe/Critical Type of Novel Coronavirus Pneumonia[J]. China Biotechnology, 2020, 40(1-2): 78-83.
[4] CHEN Man,WANG Ai-xian,WU Xue-ying,ZHEN Jun-yi,GONG Mei-wei,GUO Ya,WANG Hui. New Advances in the Application of CAR Cell Therapy in T Cell - acute Lymphoblastic Leukemia[J]. China Biotechnology, 2019, 39(9): 103-107.
[5] Wei ZHAO,Jing-da LI,Qing-ping LIU. The Development of Downstream Continuous Purification Technology of Recombinant Protein[J]. China Biotechnology, 2018, 38(10): 74-81.