Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2024, Vol. 44 Issue (2/3): 112-123    DOI: 10.13523/j.cb.2307016
    
Research Progress on Bacteria in Anti-tumor Therapy
SHI Enyu1,WANG Ning1,ZHAO Xiyue2,CHEN Bo1,CAO Mingxin1,LI Changyi1,**()
1 School and Hospital of Stomatology, Tianjin Medical University,Tianjin 300070, China
2 School of Optometry and Ophthalmology, Tianjin Medical University,Tianjin 300070, China
Download: HTML   PDF(852KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cancer is a leading cause of death. Although modern medicine has made significant progress in cancer treatment, traditional treatment methods still have limitations due to problems such as cancer heterogeneity, drug resistance, and treatment side effects. With the development of science and technology, bacterial therapy has shown great potential in the field of anti-tumor therapy. Bacteria have the natural ability to target tumors due to their survival characteristics and contain a large number of immune-activating substances, which can modulate the tumor microenvironment and activate the immune system for tumoricidal effect to kill the tumor. Some bacteria can also directly kill tumor cells and inhibit tumor angiogenesis through various pathways. Through in-depth research, scientists have also found that bacteria combined with radiotherapy, chemotherapy, and immunotherapy have gradually become the mainstream strategy of bacterial therapy. In addition, exogenous genes can be inserted into bacteria to perform specific functions according to clinical needs. When combined with various treatment modalities, it is possible to improve their therapeutic effect against tumor, and reduce the toxic side effects. The research progress of bacteria in anti-tumor therapy has been summarized from the aspects of the basic principles, types of bacteria mainly used, optimization strategies, and clinical trials and cases, in order to provide more effective therapeutic strategies for cancer patients by fully exploiting the potential of bacteria.



Key wordsBacterial anti-tumor therapy      Tumor combination therapy      Bacteria      Engineering bacteria     
Received: 13 July 2023      Published: 03 April 2024
ZTFLH:  Q819  
Cite this article:

SHI Enyu, WANG Ning, ZHAO Xiyue, CHEN Bo, CAO Mingxin, LI Changyi. Research Progress on Bacteria in Anti-tumor Therapy. China Biotechnology, 2024, 44(2/3): 112-123.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2307016     OR     https://manu60.magtech.com.cn/biotech/Y2024/V44/I2/3/112

Fig.1 Fundamentals of bacterial therapy for tumors
Fig.2 Optimized strategies for bacterial therapy of tumors
[1]   Zhao M M, Chen X X, Yang Z H, et al. Bacteria and tumor: understanding the roles of bacteria in tumor genesis and immunology. Microbiological Research, 2022, 261: 127082.
doi: 10.1016/j.micres.2022.127082
[2]   Klemen N D, Feingold P L, Hashimoto B. How strong is the evidence supporting thromboprophylaxis in surgical oncology? Journal of Clinical Oncology, 2022, 40(4): 320-323.
[3]   Petroni G, Cantley L C, Santambrogio L, et al. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nature Reviews Clinical Oncology, 2022, 19: 114-131.
doi: 10.1038/s41571-021-00579-w
[4]   Pich O, Muiños F, Lolkema M P, et al. The mutational footprints of cancer therapies. Nature Genetics, 2019, 51: 1732-1740.
doi: 10.1038/s41588-019-0525-5 pmid: 31740835
[5]   van Puffelen J H, Keating S T, Oosterwijk E, et al. Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer. Nature Reviews Urology, 2020, 17: 513-525.
doi: 10.1038/s41585-020-0346-4 pmid: 32678343
[6]   金明. 细菌作为肿瘤基因治疗载体的研究进展. 生物工程进展, 2000, 20(2): 49-51.
[6]   Jin M. Tumor-targeted bacterial as a novelanti-cancer vector. Progress in Biotechnology, 2000, 20(2): 49-51.
[7]   Zhou S B, Gravekamp C, Bermudes D, et al. Tumour-targeting bacteria engineered to fight cancer. Nature Reviews Cancer, 2018, 18: 727-743.
doi: 10.1038/s41568-018-0070-z pmid: 30405213
[8]   Toh E, Baryalai P, Nadeem A, et al. Bacterial protein MakA causes suppression of tumour cell proliferation via inhibition of PIP5K1α/Akt signalling. Cell Death & Disease, 2022, 13: 1024.
[9]   毛露珈, 史恩宇, 王瀚平, 等. 细菌外膜囊泡在抗肿瘤治疗方面的研究进展. 中国生物工程杂志, 2022, 42(5): 100-105.
[9]   Mao L J, Shi E Y, Wang H P, et al. Research progress of bacterial outer membrane vesicles in anti-tumor therapy. China Biotechnology, 2022, 42(5): 100-105.
[10]   Schmitz-Winnenthal F H, Hohmann N, Schmidt T, et al. A phase 1 trial extension to assess immunologic efficacy and safety of prime-boost vaccination with VXM01, an oral T cell vaccine against VEGFR2, in patients with advanced pancreatic cancer. Oncoimmunology, 2018, 7(4): e1303584.
[11]   Gniadek T J, Augustin L, Schottel J, et al. A phase I, dose escalation, single dose trial of oral attenuated Salmonella typhimurium containing human IL-2 in patients with metastatic gastrointestinal cancers. Journal of Immunotherapy, 2020, 43(7): 217-221.
doi: 10.1097/CJI.0000000000000325 pmid: 32554977
[12]   孙梦娜. 细菌在肿瘤治疗中的应用: 从基础到临床. 中国肿瘤生物治疗杂志, 2022, 29(11): 1049-1053.
[12]   Sun M N. Application of tumor-targeting bacteria in the treatment of immunotherapy: from basic to clinical. Chinese Journal of Cancer Biotherapy, 2022, 29(11): 1049-1053.
[13]   Longmore G D. Bacteria in tumors “hit the road” together. Cell, 2022, 185(8): 1292-1294.
doi: 10.1016/j.cell.2022.03.013 pmid: 35427497
[14]   Song W F, Zheng D W, Zeng S M, et al. Targeting to tumor-harbored bacteria for precision tumor therapy. ACS Nano, 2022, 16(10): 17402-17413.
doi: 10.1021/acsnano.2c08555
[15]   Shao C C, Yang F M, Miao S Y, et al. Role of hypoxia-induced exosomes in tumor biology. Molecular Cancer, 2018, 17(1): 120.
[16]   Kao K C, Vilbois S, Tsai C H, et al. Metabolic communication in the tumour-immune microenvironment. Nature Cell Biology, 2022, 24: 1574-1583.
doi: 10.1038/s41556-022-01002-x
[17]   刘兰兰, 梁锐晶, 蔡林涛. 细菌驱动的免疫调控与肿瘤精准治疗. 生命科学, 2023, 35(3): 277-286.
[17]   Liu L L, Liang R J, Cai L T. Bacteria-driven immune regulation and tumor precision therapy. Chinese Bulletin of Life Sciences, 2023, 35(3): 277-286.
[18]   黄筱钧, 邓昭敏, 张硕, 等. 厌氧菌在肿瘤生物治疗中的研究进展. 中国老年学杂志, 2014, 34(22): 6507-6509.
[18]   Huang X J, Deng Z M, Zhang S, et al. Research progress of anaerobic bacteria in tumor biotherapy. Chinese Journal of Gerontology, 2014, 34(22): 6507-6509.
[19]   Roma-Rodrigues C, Mendes R, Baptista P V, et al. Targeting tumor microenvironment for cancer therapy. International Journal of Molecular Sciences, 2019, 20(4): 840.
[20]   杨鹏, 孙莹, 王志宏, 等. 肿瘤酸性微环境对免疫细胞影响的研究进展. 中国免疫学杂志, 2021, 37(5): 613-617, 624.
[20]   Yang P, Sun Y, Wang Z H, et al. Research progress on effect of tumor acidic microenvironment on immune cells. Chinese Journal of Immunology, 2021, 37(5): 613-617, 624.
[21]   Wu Y D, Li Q W, Liu Y, et al. Targeting hypoxia for sensitization of tumors to apoptosis enhancement through supramolecular biohybrid bacteria. International Journal of Pharmaceutics, 2021, 605: 120817.
doi: 10.1016/j.ijpharm.2021.120817
[22]   Stritzker J, Weibel S, Seubert C, et al. Enterobacterial tumor colonization in mice depends on bacterial metabolism and macrophages but is independent of chemotaxis and motility. International Journal of Medical Microbiology, 2010, 300(7): 449-456.
doi: 10.1016/j.ijmm.2010.02.004 pmid: 20547100
[23]   周航. 细菌在肿瘤靶向与免疫治疗中应用的研究进展. 中国肿瘤生物治疗杂志, 2023, 30(1): 67-74.
[23]   Zhou H. Research progress on the application of bacteria in tumor targeting and immunotherapy. Chinese Journal of Cancer Biotherapy, 2023, 30(1): 67-74.
[24]   Liu Y, Niu L L, Li N N, et al. Bacterial-mediated tumor therapy: old treatment in a new context. Advanced Science, 2023, 10(18): e2302957.
[25]   Feng Z, Wang Y C, Xu H H, et al. Recent advances in bacterial therapeutics based on sense and response. Acta Pharmaceutica Sinica B, 2023, 13(3): 1014-1027.
doi: 10.1016/j.apsb.2022.09.015 pmid: 36970195
[26]   Gupta K H, Nowicki C, Giurini E F, et al. Bacterial-based cancer therapy (BBCT): recent advances, current challenges, and future prospects for cancer immunotherapy. Vaccines, 2021, 9(12): 1497.
[27]   Jiménez-Jiménez C, Moreno V M, Vallet-Regí M. Bacteria-assisted transport of nanomaterials to improve drug delivery in cancer therapy. Nanomaterials, 2022, 12(2): 288.
[28]   Ma X T, Liang X L, Li Y, et al. Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field. Nature Communications, 2023, 14: 1606.
doi: 10.1038/s41467-023-37225-1 pmid: 36959204
[29]   Kim S H, Castro F, Paterson Y, et al. High efficacy of a Listeria-based vaccine against metastatic breast cancer reveals a dual mode of action. Cancer Research, 2009, 69(14): 5860-5866.
doi: 10.1158/0008-5472.CAN-08-4855
[30]   Wei X Y, Du M, Chen Z Y, et al. Recent advances in bacteria-based cancer treatment. Cancers, 2022, 14(19): 4945.
[31]   Middlebrook J L, Dorland R B. Bacterial toxins: cellular mechanisms of action. Microbiological Reviews, 1984, 48(3): 199-221.
doi: 10.1128/mr.48.3.199-221.1984 pmid: 6436655
[32]   Cheong I, Huang X, Bettegowda C, et al. A bacterial protein enhances the release and efficacy of liposomal cancer drugs. Science, 2006, 314(5803): 1308-1311.
pmid: 17124324
[33]   Bettegowda C, Huang X, Lin J, et al. The genome and transcriptomes of the anti-tumor agent Clostridium novyi-NT. Nature Biotechnology, 2006, 24: 1573-1580.
doi: 10.1038/nbt1256 pmid: 17115055
[34]   Do T T, Do T P, Nguyen T N, et al. Nanoliposomal L-asparaginase and its antitumor activities in lewis lung carcinoma tumor-induced BALB/c mice. Advances in Materials Science and Engineering, 2019, 2019: 3534807.
[35]   Fiedler T, Strauss M, Hering S, et al. Arginine deprivation by arginine deiminase of Streptococcus pyogenes controls primary glioblastoma growth in vitro and in vivo. Cancer Biology & Therapy, 2015, 16(7): 1047-1055.
[36]   Zhou S J, Zhao Z G, Lin Y, et al. Suppression of pancreatic ductal adenocarcinoma growth by intratumoral delivery of attenuated Salmonella typhimurium using a dual fluorescent live tracking system. Cancer Biology & Therapy, 2016, 17(7): 732-740.
[37]   Shinnoh M, Horinaka M, Yasuda T, et al. Clostridium butyricum MIYAIRI 588 shows antitumor effects by enhancing the release of TRAIL from neutrophils through MMP-8. International Journal of Oncology, 2013, 42(3): 903-911.
doi: 10.3892/ijo.2013.1790
[38]   Alizadeh S, Esmaeili A, Omidi Y. Anti-cancer properties of Escherichia coli Nissle 1917 against HT-29 colon cancer cells through regulation of Bax/Bcl-xL and AKT/PTEN signaling pathways. Iranian Journal of Basic Medical Sciences, 2020, 23(7): 886-893.
doi: 10.22038/ijbms.2020.43016.10115 pmid: 32774810
[39]   Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences, 2020, 77(9): 1745-1770.
doi: 10.1007/s00018-019-03351-7 pmid: 31690961
[40]   Kalia V C, Patel S K S, Cho B K, et al. Emerging applications of bacteria as antitumor agents. Seminars in Cancer Biology, 2022, 86: 1014-1025.
doi: 10.1016/j.semcancer.2021.05.012
[41]   Liang K, Liu Q, Li P, et al. Genetically engineered Salmonella typhimurium: recent advances in cancer therapy. Cancer Letters, 2019, 448: 168-181.
doi: S0304-3835(19)30064-3 pmid: 30753837
[42]   Guo Y X, Chen Y, Liu X Q, et al. Targeted cancer immunotherapy with genetically engineered oncolytic Salmonella typhimurium. Cancer Letters, 2020, 469: 102-110.
doi: 10.1016/j.canlet.2019.10.033
[43]   Guo F Z, Ji G L, Li Q Q, et al. Bacterial particles retard tumor growth as a novel vascular disrupting agent. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 2020, 122: 109757.
[44]   Bi Z Q, Cui E Q, Yao Y Y, et al. Recombinant Bifidobacterium longum carrying endostatin protein alleviates dextran sodium sulfate-induced colitis and colon cancer in rats. Frontiers in Microbiology, 2022, 13: 927277.
[45]   Liang K, Liu Q, Li P, et al. Endostatin gene therapy delivered by attenuated Salmonella typhimurium in murine tumor models. Cancer Gene Therapy, 2018, 25: 167-183.
doi: 10.1038/s41417-018-0021-6 pmid: 29755110
[46]   Liang K, Tian Z Y, Chen X, et al. Attenuated Salmonella typhimurium with truncated LPS and outer membrane-displayed RGD peptide for cancer therapy. Biomedicine & Pharmacotherapy, 2022, 155: 113682.
doi: 10.1016/j.biopha.2022.113682
[47]   栾斌, 冯梅晶, 乔俊英. 细菌脂多糖对哮喘小鼠血清IL-4、IL-8及肺组织VEGF表达的影响. 中国当代儿科杂志, 2012, 14(4): 297-300.
pmid: 22537962
[47]   Luan B, Feng M J, Qiao J Y. Effects of bacterial lipopolysaccharide on serum IL-4, serum IL-8 and pulmonary VEGF expression in mice with asthma. Chinese Journal of Contemporary Pediatrics, 2012, 14(4): 297-300.
pmid: 22537962
[48]   Saccheri F, Pozzi C, Avogadri F, et al. Bacteria-induced gap junctions in tumors favor antigen cross-presentation and antitumor immunity. Science Translational Medicine, 2010, 2(44): 44ra57.
[49]   Wang W K, Chen M C, Leong H F, et al. Connexin 43 suppresses tumor angiogenesis by down-regulation of vascular endothelial growth factor via hypoxic-induced factor-1α. International Journal of Molecular Sciences, 2014, 16(1): 439-451.
doi: 10.3390/ijms16010439
[50]   崔维刚, 时会芳, 张敏, 等. 髓源性抑制细胞在肿瘤微环境中作用的研究进展. 中国医药, 2022, 17(10): 1592-1596.
[50]   Cui W G, Shi H F, Zhang M, et al. Research advances of the functions of myeloid-derived suppressor cells in tumor microenvironment. China Medicine, 2022, 17(10): 1592-1596.
[51]   林雅婷, 辜学忠, 何君, 等. 调节性T细胞在多发性骨髓瘤发病机制中作用的最新研究进展. 中国实验血液学杂志, 2023, 31(1): 297-300.
[51]   Lin Y T, Gu X Z, He J, et al. Research progress of regulatory T cells in the pathogenesis of multiple myeloma: review. Journal of Experimental Hematology, 2023, 31(1): 297-300.
[52]   Leigh N D, Bian G L, Ding X L, et al. A flagellin-derived toll-like receptor 5 agonist stimulates cytotoxic lymphocyte-mediated tumor immunity. PLoS One, 2014, 9(1): e85587.
[53]   Phan T X, Nguyen V H, Duong M T Q, et al. Activation of inflammasome by attenuated Salmonella typhimurium in bacteria-mediated cancer therapy. Microbiology and Immunology, 2015, 59(11): 664-675.
doi: 10.1111/mim.v59.11
[54]   Kim J E, Phan T X, Nguyen V H, et al. Salmonella typhimurium suppresses tumor growth via the pro-inflammatory cytokine interleukin-1β. Theranostics, 2015, 5(12): 1328-1342.
doi: 10.7150/thno.11432
[55]   Jiang H, Guo Y D, Yu Z G, et al. Nanocatalytic bacteria disintegration reverses immunosuppression of colorectal cancer. National Science Review, 2022, 9(11): nwac169.
[56]   Gopalakrishnan V, Helmink B A, Spencer C N, et al. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell, 2018, 33(4): 570-580.
doi: S1535-6108(18)30120-X pmid: 29634945
[57]   Tanoue T, Morita S, Plichta D R, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature, 2019, 565: 600-605.
doi: 10.1038/s41586-019-0878-z
[58]   Sfondrini L, Rossini A, Besusso D, et al. Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. Journal of Immunology, 2006, 176(11): 6624-6630.
doi: 10.4049/jimmunol.176.11.6624 pmid: 16709820
[59]   Chandra D, Jahangir A, Quispe-Tintaya W, et al. Myeloid-derived suppressor cells have a central role in attenuated Listeria monocytogenes-based immunotherapy against metastatic breast cancer in young and old mice. British Journal of Cancer, 2013, 108(11): 2281-2290.
doi: 10.1038/bjc.2013.206 pmid: 23640395
[60]   Wallecha A, Singh R, Malinina I. Listeria monocytogenes (lm)-LLO immunotherapies reduce the immunosuppressive activity of myeloid-derived suppressor cells and regulatory T cells in the tumor microenvironment. Journal of Immunotherapy, 2013, 36(9): 468-476.
doi: 10.1097/CJI.0000000000000000 pmid: 24145358
[61]   Hinshaw D C, Shevde L A. The tumor microenvironment innately modulates cancer progression. Cancer Research, 2019, 79(18): 4557-4566.
doi: 10.1158/0008-5472.CAN-18-3962 pmid: 31350295
[62]   李雨桐, 崔天琦, 张海林, 等. 肿瘤靶向细菌Escherichia coli nissle 1917在癌症治疗中的研究进展. 中国生物工程杂志, 2023, 43(6): 54-68.
[62]   Li Y T, Cui T Q, Zhang H L, et al. Research advances in tumor-targeting bacteria Escherichia coli nissle 1917 in cancer therapy. China Biotechnology, 2023, 43(6): 54-68.
[63]   刘皓, 胡颖. 氧化还原稳态调控机制与肿瘤治疗. 中国细胞生物学学报, 2022, 44(4): 583-593.
[63]   Liu H, Hu Y. Regulation mechanisms of redox homeostasis and cancer therapy. Chinese Journal of Cell Biology, 2022, 44(4): 583-593.
[64]   Becerra-Báez E I, Meza-Toledo S E, Muñoz-López P, et al. Recombinant attenuated Salmonella enterica as a delivery system of heterologous molecules in cancer therapy. Cancers, 2022, 14(17): 4224.
[65]   Mohseni A H, Razavilar V, Keyvani H, et al. Oral immunization with recombinant Lactococcus lactis NZ9000 expressing human papillomavirus type 16 E7 antigen and evaluation of its immune effects in female C57BL/6 mice. Journal of Medical Virology, 2019, 91(2): 296-307.
doi: 10.1002/jmv.v91.2
[66]   Chen H J, Lei P Y, Ji H, et al. Advances in Escherichia coli Nissle 1917 as a customizable drug delivery system for disease treatment and diagnosis strategies. Materials Today Bio, 2023, 18: 100543.
doi: 10.1016/j.mtbio.2023.100543
[67]   Chen J X, Yang B Y, Cheng X W, et al. Salmonella-mediated tumor-targeting TRAIL gene therapy significantly suppresses melanoma growth in mouse model. Cancer Science, 2012, 103(2): 325-333.
doi: 10.1111/cas.2012.103.issue-2
[68]   Tan W Z, Duong M T Q, Zuo C H, et al. Targeting of pancreatic cancer cells and stromal cells using engineered oncolytic Salmonella typhimurium. Molecular Therapy, 2022, 30(2): 662-671.
doi: 10.1016/j.ymthe.2021.08.023
[69]   He L, Yang H J, Tang J L, et al. Intestinal probiotics E. coli Nissle 1917 as a targeted vehicle for delivery of p53 and Tum-5 to solid tumors for cancer therapy. Journal of Biological Engineering, 2019, 13: 58.
doi: 10.1186/s13036-019-0189-9
[70]   Luengo-Gil G, Conesa-Zamora P. Potential utility of induced translocation of engineered bacteria as a therapeutic agent for mounting a personalized neoantigen-based tumor immune response. Global Challenges, 2022, 6(3): 2100051.
[71]   Le D T, Wang-Gillam A, Picozzi V, et al. Safety and survival with GVAX pancreas prime and Listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. Journal of Clinical Oncology, 2015, 33(12): 1325-1333.
doi: 10.1200/JCO.2014.57.4244
[72]   Loeffler M, Le’Negrate G, Krajewska M, et al. IL-18-producing Salmonella inhibit tumor growth. Cancer Gene Therapy, 2008, 15(12): 787-794.
doi: 10.1038/cgt.2008.48 pmid: 18654612
[73]   Manuel E R, Blache C A, Paquette R, et al. Enhancement of cancer vaccine therapy by systemic delivery of a tumor-targeting Salmonella-based STAT3 shRNA suppresses the growth of established melanoma tumors. Cancer Research, 2011, 71(12): 4183-4191.
doi: 10.1158/0008-5472.CAN-10-4676 pmid: 21527558
[74]   Blache C A, Manuel E R, Kaltcheva T I, et al. Systemic delivery of Salmonella typhimurium transformed with IDO shRNA enhances intratumoral vector colonization and suppresses tumor growth. Cancer Research, 2012, 72(24): 6447-6456.
doi: 10.1158/0008-5472.CAN-12-0193
[75]   Huang C Y, Wang F B, Liu L, et al. Hypoxic tumor radiosensitization using engineered probiotics. Advanced Healthcare Materials, 2021, 10(10): e2002207.
[76]   Luo G F, Chen W H, Zeng X, et al. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chemical Society Reviews, 2021, 50(2): 945-985.
doi: 10.1039/D0CS00152J
[77]   Xie S Z, Zhao L, Song X J, et al. Doxorubicin-conjugated Escherichia coli Nissle 1917 swimmers to achieve tumor targeting and responsive drug release. Journal of Controlled Release, 2017, 268: 390-399.
doi: 10.1016/j.jconrel.2017.10.041
[78]   Van Du Nguyen, Han J W, Choi Y J, et al. Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella typhimurium). Sensors and Actuators B: Chemical, 2016, 224: 217-224.
doi: 10.1016/j.snb.2015.09.034
[79]   Shi E Y, Shan T H, Wang H P, et al. A bacterial nanomedicine combines photodynamic-immunotherapy and chemotherapy for enhanced treatment of oral squamous cell carcinoma. Small, 2023, 19(52): e2304014.
[80]   Cao K, Luo T, Hu L Y, et al. Heat-killed Salmonella typhimurium mitigated radiation-induced lung injury. Clinical and Experimental Pharmacology & Physiology, 2019, 46(12): 1084-1091.
[81]   Yoon W, Park Y, Kim S, et al. Combined therapy with microRNA-expressing Salmonella and irradiation in melanoma. Microorganisms, 2021, 9(11): 2408.
[82]   Yoon W S, Kim S, Seo S, et al. Salmonella typhimurium with γ-radiation induced H2AX phosphorylation and apoptosis in melanoma. Bioscience, Biotechnology, and Biochemistry, 2014, 78(6): 1082-1085.
doi: 10.1080/09168451.2014.905173
[83]   Lim J Y, Brockstedt D G, Lord E M, et al. Radiation therapy combined with Listeria monocytogenes-based cancer vaccine synergize to enhance tumor control in the B 16 melanoma model. Oncoimmunology, 2014, 3: e29028.
doi: 10.4161/onci.29028
[84]   Denkova A G, de Kruijff R M, Serra-Crespo P. Nanocarrier-mediated photochemotherapy and photoradiotherapy. Advanced Healthcare Materials, 2018, 7(8): e1701211.
[85]   王刚, 雷梦颖, 周艳林, 等. 基于光热治疗和光动力治疗的光学疗法用于肿瘤治疗. 化学试剂, 2022, 44(4): 504-513.
[85]   Wang G, Lei M Y, Zhou Y L, et al. PTT/PDT based phototheranostics for tumor therapy. Chemical Reagents, 2022, 44(4): 504-513.
[86]   Wang Y B, Xu C N, Meng M, et al. Precise regulation of inflammation and immunosuppressive microenvironment for amplified photothermal/immunotherapy against tumour recurrence and metastasis. Nano Today, 2021, 40: 101266.
doi: 10.1016/j.nantod.2021.101266
[87]   Zhong Y L, Li T Y, Zhu Y F, et al. Targeting proinflammatory molecules using multifunctional MnO nanoparticles to inhibit breast cancer recurrence and metastasis. ACS Nano, 2022, 16(12): 20430-20444.
doi: 10.1021/acsnano.2c06713 pmid: 36382718
[88]   Zhang Z T, Zhang K X, Wang R Y, et al. A self-amplified necrotic targeting theranostic nanoparticle with deep tumor penetration for imaging-guided personalized chemo-photodynamic therapy. Chemical Engineering Journal, 2023, 455: 140465.
doi: 10.1016/j.cej.2022.140465
[89]   Guo H Y, Cao Z P, Li J J, et al. Integrating bacteria with a ternary combination of photosensitizers for monochromatic irradiation-mediated photoacoustic imaging-guided synergistic photothermal therapy. ACS Nano, 2023, 17(5): 5059-5071.
doi: 10.1021/acsnano.3c00032
[90]   Liu L L, He H M, Luo Z Y, et al. In situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple-negative breast cancer. Advanced Functional Materials, 2020, 30(10): 1910176.
[91]   Chen W F, Guo Z F, Zhu Y N, et al. Combination of bacterial-photothermal therapy with an anti-PD-1 peptide depot for enhanced immunity against advanced cancer. Advanced Functional Materials, 2020, 30(1): 1906623.
[92]   Tao C C, Miao X X, Yan J, et al. Hypoxia-targeted and spatial-selective tumor suppression by near infrared nanoantenna sensitized engineered bacteria. Acta Biomaterialia, 2023, 170: 442-452.
doi: 10.1016/j.actbio.2023.08.044
[93]   An J X, Han Z Y, Qin Y T, et al. Bacteria-based backpacks to enhance adoptive macrophage transfer against solid tumors. Advanced Materials, 2023: e2305384.
[94]   陈雯霏, 何春婷, 张志荣, 等. 细菌与免疫疗法联用的抗肿瘤策略. 生命科学, 2023, 35(3): 267-276.
[94]   Chen W F, He C T, Zhang Z R, et al. Synergistic strategy of bacteria and immunotherapy against tumors. Chinese Bulletin of Life Sciences, 2023, 35(3): 267-276.
[95]   荣丽, 胡叶凡, 刘陈立, 等. 沙门氏菌抗肿瘤疗法在合成生物学时代的发展和机遇. 生命科学, 2023, 35(3): 287-295.
[95]   Rong L, Hu Y F, Liu C L, et al. The development and opportunity of Salmonella-based anti-tumor therapies in the era of synthetic biology. Chinese Bulletin of Life Sciences, 2023, 35(3): 287-295.
[96]   Liu Y, Zhang M M, Wang X Y, et al. Dressing bacteria with a hybrid immunoactive nanosurface to elicit dual anticancer and antiviral immunity. Advanced Materials, 2023, 35(11): e2210949.
[97]   Abedi M H, Yao M S, Mittelstein D R, et al. Ultrasound-controllable engineered bacteria for cancer immunotherapy. Nature Communications, 2022, 13: 1585.
doi: 10.1038/s41467-022-29065-2 pmid: 35332124
[98]   Li J J, Xia Q, Guo H Y, et al. Decorating bacteria with triple immune nanoactivators generates tumor-resident living immunotherapeutics. Angewandte Chemie (International Ed in English), 2022, 61(27): e202202409.
[99]   Luo W, Zhang Z B, Zhou D T, et al. Deep tumor penetration of CRISPR-cas system for photothermal-sensitized immunotherapy via probiotics. Nano Letters, 2023, 23(17): 8081-8090.
doi: 10.1021/acs.nanolett.3c02061
[100]   Zhang M, Luo F F, Zhang Y F, et al. Pseudomonas aeruginosa mannose-sensitive hemagglutinin promotes T-cell response via toll-like receptor 4-mediated dendritic cells to slow tumor progression in mice. The Journal of Pharmacology and Experimental Therapeutics, 2014, 349(2): 279-287.
doi: 10.1124/jpet.113.212316
[101]   Li T, Yang L, Fu S J, et al. Subcutaneous injections of the mannose-sensitive hemagglutination Pilus strain of Pseudomonas aeruginosa stimulate host immunity, reduce bladder cancer size and improve tumor survival in mice. Cell Biochemistry and Biophysics, 2015, 73(1): 245-252.
doi: 10.1007/s12013-015-0611-y
[102]   Nair N, Chen S Y, Lemmens E, et al. Single-cell immune competency signatures associate with survival in phase II GVAX and CRS-207 randomized studies in patients with metastatic pancreatic cancer. Cancer Immunology Research, 2020, 8(5): 609-617.
doi: 10.1158/2326-6066.CIR-19-0650 pmid: 32132105
[103]   Tsujikawa T, Crocenzi T, Durham J N, et al. Evaluation of cyclophosphamide/GVAX pancreas followed by Listeria-mesothelin (CRS-207) with or without nivolumab in patients with pancreatic cancer. Clinical Cancer Research, 2020, 26(14): 3578-3588.
doi: 10.1158/1078-0432.CCR-19-3978 pmid: 32273276
[104]   Janku F, Zhang H H, Pezeshki A, et al. Intratumoral injection of Clostridium novyi-NT spores in patients with treatment-refractory advanced solid tumors. Clinical Cancer Research, 2021, 27(1): 96-106.
doi: 10.1158/1078-0432.CCR-20-2065
[1] ZHANG Guixue, DONG Xiaoyi, PAN Jie, LI Qiyan. Research Progress on Bismuth-based Antibacterial Nanomaterials[J]. China Biotechnology, 2024, 44(2/3): 153-163.
[2] Shuyang SUN, Shengbo WU, Xinqiao ZHANG, Changchang LIANG, Jianjun QIAO. Advances in Quorum-sensing Bidirectional Interactions Between Phages and Bacteria[J]. China Biotechnology, 2024, 44(1): 107-117.
[3] Qian WANG, Yixuan QIN, Qiang KONG, Huiyu LI, Kejin ZONG, Yinghui WANG, Minghui RONG. Research Progress of Microbial Quorum Sensing in Wastewater Biological Treatment[J]. China Biotechnology, 2024, 44(1): 118-127.
[4] HU Xiu-ling, XIONG Li-yang, WEI Yun-lin. Research Progresses on Quorum Sensing System Involved in Gram Positive Bacteria[J]. China Biotechnology, 2023, 43(2/3): 165-173.
[5] MA Yi-fan, SUN Hui-li, MAO Shao-ming, LUAN Guo-dong, LV Xue-feng. Application of Evolutionary Engineering in Cyanobacterial Biology and Biotechnology Research[J]. China Biotechnology, 2023, 43(11): 92-104.
[6] ZHANG Ai-di, CUI Jin-yu, ZHANG Ya-ning, MAO Shao-ming, LUAN Guo-dong, LV Xue-feng. Research Progress and Prospects of Cyanobacterial Secondary Metabolite Scytonemin[J]. China Biotechnology, 2023, 43(10): 85-95.
[7] XIONG Li-yang, HU Xiu-ling, WEI Yun-lin. Advances in Non-antibiotic Therapy for Drug-resistant Bacteria[J]. China Biotechnology, 2023, 43(1): 50-58.
[8] CHAI Yu-jie,FENG Jia,ZHOU Jian-ting,JIANG Jian-lan. Progress on Biological Treatment Technologies of Microcystins[J]. China Biotechnology, 2022, 42(8): 109-127.
[9] Xue-xia ZENG,Yu DAN,Shao-ming MAO,Jia-hui SUN,Guo-dong LUAN,Xue-feng LV. Research Progress on the Cyanobacterial Photosynthetic Production of Sugars Utilizing Carbon Dioxide[J]. China Biotechnology, 2022, 42(7): 90-100.
[10] MAO Lu-jia,SHI En-yu,WANG Han-ping,SHAN Tian-he,WANG Yin-song,WANG Yue. Research Progress of Bacterial Outer Membrane Vesicles in Anti-tumor Therapy[J]. China Biotechnology, 2022, 42(5): 100-105.
[11] WANG Ya-ling,CHENG An-chun,LIU Ma-feng. A Review on Structure and Functions of TonB-dependent Receptors in Gram-negative Bacteria[J]. China Biotechnology, 2022, 42(4): 93-101.
[12] ZHANG Qi, ZHANG Yi-xia, XUE Cai-li, ZHANG Hui, ZHANG Yun-peng, YANG Da-peng. Research Progress on Reuse of Biomass Resource of Oyster Shells[J]. China Biotechnology, 2022, 42(11): 126-139.
[13] MA Chun-lan,LI Jin-hua,BAI Yu-fan,WEI Yun-lin. Advances in Bacterial Adaptive Evolution under Heavy Metal Ion Stress[J]. China Biotechnology, 2022, 42(1/2): 182-190.
[14] LI Jin-hua,BAI Yu-fan,MA Chun-lan,JI Xiu-ling,WEI Yun-lin. Research Progress on Temperature Adaptation of Bacteriophage[J]. China Biotechnology, 2022, 42(1/2): 139-145.
[15] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.