Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (11): 105-115    DOI: 10.13523/j.cb.2306022
    
Advances in Extraction Processes of Biodegradable Biomaterials PHA
LU Cheng-rong1,ZHANG Meng-jun1,2,**(),ZHENG Wei-shuang1,2,LU Xiao-juan1,YU Sheng-yang1,HUANG Yi1,3
1 Peking University Shenzhen Institute, Shenzhen 518057, China
2 PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen 518057, China
3 College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
Download: HTML   PDF(1067KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As a class of polymer polyester widely existing in microbial cells, Polyhydroxyalkanoate (PHA) has complete biodegradability and excellent biocompatibility, and is considered to be one of the most environmentally friendly bio-based polymer materials. In recent years, the utilization of synthetic biotechnology in genetically modified PHA-producing bacteria, coupled with the escalating demand for eco-friendly materials such as PHA in social and economic development, has led to significant advancements in PHA fermentation technology. However, the extraction cost has emerged as a pivotal factor impeding the commercial application of PHA. This article comprehensively summarizes the technologies and principles underlying various PHA extraction processes, encompassing physical, chemical and biological methods. Furthermore, it conducts a comparative analysis of the advantages and disadvantages associated with each extraction process, with the aim of providing valuable information and references for further cost reduction and efficiency enhancement in PHA extraction. Building upon the current state of PHA extraction process development, this article also presents prospects for the development of PHA extraction. Presently, PHA extraction processes typically combine multiple extraction methods to overcome the limitations of individual techniques; however, process conditions still necessitate optimization. The application of a novel PHA recovery biological system constructed using synthetic biotechnology holds great promise as the most effective strategy for reducing the cost of PHA extraction in the future.



Key wordsPolyhydroxyalkanoate      Physical extraction method      Chemical extraction method      Biological extraction method      Synthetic biotechnology     
Received: 15 June 2023      Published: 01 December 2023
ZTFLH:  Q819  
Corresponding Authors: Meng-jun ZHANG     E-mail: zhangmj@ier.org.cn
Cite this article:

LU Cheng-rong,ZHANG Meng-jun,ZHENG Wei-shuang,LU Xiao-juan,YU Sheng-yang,HUANG Yi. Advances in Extraction Processes of Biodegradable Biomaterials PHA. China Biotechnology, 2023, 43(11): 105-115.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2306022     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I11/105

提取方法 类型 优点 缺点 参考文献
物理提取法 高压匀浆 污染少 高能耗,提取效率低 [5]
超声波
化学提取法 卤化试剂 回收率高,纯度高 污染环境,成本高,不适用于大规模生产 [6]
非卤化试剂 回收率高,纯度高,毒性低 成本较高 [7]
化学消解 污染少,成本低 回收率低,纯度低,可能会降解PHA [8]
双水相萃取(ATPS) 毒性低,反应条件温和,操作容量大 再现性差,理论基础未明 [9]
超临界流体萃取 化学试剂使用量低 设备成本高 [1]
生物提取法 酶消解 提取效率高,回收率高,纯度高,
反应条件温和
成本高 [3, 10]
合成生物技术 化学试剂使用量低,提取工艺简单,
提取效率较高
需构建基因工程菌株 [11-12]
生物体提取 化学试剂使用量低 提取效率较低,养殖成本高,
存在疾病传播风险
[13-14]
掠食性细菌 化学试剂使用量低,成本低 可能会降解PHA [15]
Table 1 Comparison of PHA extraction methods
提取方法 试剂 菌株 结果 参考文献
卤化试剂 氯仿 Hydrogenophaga palleronii. 回收率:96%;纯度:99% [22]
二氯乙烷/丙酮 Cupriavidus necator 回收率:70%;纯度:97% [23]
绿色低毒试剂 乙酸乙酯 Cupriavidus necator 回收率:96%;纯度:98% [22]
丁酸乙酯 回收率:82%;纯度:98% [22]
乙醇 回收率:92%;纯度:98% [26]
碳酸二甲酯/1-丁醇 活性污泥 纯度:98% [24]
碳酸二甲酯 回收率:89%;纯度:99% [27]
化学消解 Triton X-100 Escherichia coli 回收率:100%;纯度:98% [19]
NaOH / SDS Mixed microorganism 回收率:91%;纯度:99% [31]
NaOH /乙醇 Cupriavidus necator 回收率:95%;纯度:90% [32-33]
次氯酸盐 混合微生物 回收率:100%;纯度:90% [34]
次氯酸盐/碳酸二甲酯 混合微生物 回收率:63%;纯度:98% [8]
ATPS 聚乙二醇/磷酸盐 Bacillus flexus 纯度:97% [35]
环氧乙烷/环氧丙烷 Cupriavidus necator 回收率:94%;纯化系数:1.42 [36]
超临界流体 CO2/甲苯 Cupriavidus necator 回收率:81% [37]
CO2/甲醇 活性污泥 回收率:80%;纯度:80% [38]
Table 2 Summary of PHA extracted by different chemical methods
Fig.1 Comparison of PHA extraction with organic solvent and non-organic solvent
Fig.2 Biological extraction of PHA
Fig.3 Extraction of PHA by synthetic biotechnology
公司 生产菌株 生产/规划生产
规模/(t/a)
提取纯化方法 参考文献
广东荷风生物科技有限公司 Halomonas sp. 1 000 高温提取 [61]
江苏蓝素生物材料有限公司 Escherichia coli 25 000 高压匀浆+表面活性剂、强氧化剂 [62]
湖北微琪生物科技有限公司 - 30 000 酶提取 [63]
宁波天安生物科技有限公司 Cupriavidus necator 2 000 高压匀浆/超声波+碱液、钠盐、表面活性剂 [60,64]
中粮生化能源(榆树)有限公司 Halomonas sp. 1 000 高温高压+超声波 [17-18,45,65]
超声波+溶菌酶、表面活性剂
氨水+超声波
北京微构工场生物技术有限公司 Halobacterium sp. - 高压匀浆/超声波/珠磨+酶、表面活性剂 [28]
Table 3 Extraction process of PHA production companies
[1]   Kosseva M R, Rusbandi E. Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. International Journal of Biological Macromolecules, 2018, 107: 762-778.
doi: S0141-8130(17)32314-0 pmid: 28928063
[2]   陈国强. 微生物聚羟基脂肪酸酯的应用新进展. 中国材料进展, 2012, 31(2):7-15.
[2]   Chen G Q. Recent progress in application of microbial polyhydroxyalkanoates. Rare Metals Letters, 2012, 31(2):7-15.
[3]   Gonzalez K, Navia R, Liu S J, et al. Biological approaches in polyhydroxyalkanoates recovery. Current Microbiology, 2021, 78(1): 1-10.
doi: 10.1007/s00284-020-02263-1 pmid: 33112974
[4]   刘凯旋, 沈宏伟, 谢鑫颖, 等. PHA生物制造及加工过程进展. 生物加工过程, 2022, 20(2): 206-216.
[4]   Liu K X, Shen H W, Xie X Y, et al. Advances in biomanufacturing and processing of polyhydroxyalkanoate(PHA). Chinese Journal of Bioprocess Engineering, 2022, 20(2): 206-216.
[5]   Melo R N, Souza Hassemer G, Steffens J, et al. Recent updates to microbial production and recovery of polyhydroxyalkanoates. 3 Biotech, 2023, 13(6): 1-16.
doi: 10.1007/s13205-022-03398-7
[6]   Kurian N S, Das B. Comparative analysis of various extraction processes based on economy, eco-friendly, purity and recovery of polyhydroxyalkanoate: a review. International Journal of Biological Macromolecules, 2021, 183: 1881-1890.
doi: 10.1016/j.ijbiomac.2021.06.007 pmid: 34090850
[7]   Aramvash A,Moazzeni Zavareh F, Gholami Banadkuki N. Comparison of different solvents for extraction of polyhydroxybutyrate from Cupriavidus necator. Engineering in Life Sciences, 2018, 18(1): 20-28.
doi: 10.1002/elsc.201700102 pmid: 32624857
[8]   Samorì C, Abbondanzi F, Galletti P, et al. Extraction of polyhydroxyalkanoates from mixed microbial cultures: impact on polymer quality and recovery. Bioresource Technology, 2015, 189: 195-202.
doi: S0960-8524(15)00394-6 pmid: 25889806
[9]   Rito-Palomares M. Practical application of aqueous two-phase partition to process development for the recovery of biological products. Journal of Chromatography B, 2004, 807(1): 3-11.
doi: 10.1016/j.jchromb.2004.01.008
[10]   Macagnan K L, Alves M I, da Silveira Moreira A. Approaches for enhancing extraction of bacterial polyhydroxyalkanoates for industrial applications. Biotechnological Applications of Polyhydroxyalkanoates. Singapore: Springer, 2019: 389-408.
[11]   Martínez V, García P, García J L, et al. Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440. Microbial Biotechnology, 2011, 4(4): 533-547.
doi: 10.1111/mbt.2011.4.issue-4
[12]   Borrero-de Acuña J M, Hidalgo-Dumont C, Pacheco N, et al. A novel programmable lysozyme-based lysis system in Pseudomonas putida for biopolymer production. Scientific Reports, 2017, 7(1): 1-11.
doi: 10.1038/s41598-016-0028-x
[13]   Kunasundari B, Murugaiyah V, Kaur G, et al. Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously. PLoS One, 2013, 8(10): e78528.
doi: 10.1371/journal.pone.0078528
[14]   Murugan P, Han L Z, Gan C Y, et al. A new biological recovery approach for PHA using mealworm, Tenebrio molitor. Journal of Biotechnology, 2016, 239: 98-105.
doi: S0168-1656(16)31568-1 pmid: 27746304
[15]   Martínez V, Herencias C, Jurkevitch E, et al. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates. Scientific Reports, 2016, 6(1): 1-12.
doi: 10.1038/s41598-016-0001-8
[16]   Koller M, Bona R, Chiellini E, et al. Extraction of short-chain-length poly-[(R)-hydroxyalkanoates](scl-PHA) by the "anti-solvent" acetone under elevated temperature and pressure. Biotechnology Letters, 2013, 35(7): 1023-1028.
doi: 10.1007/s10529-013-1185-7
[17]   佟毅, 李义, 郭元亨, 等. 高温高压下结合超声提取聚羟基脂肪酸酯的方法和系统: 中国, CN111346580B. 2020-12-11[2023-07-20]. https://pss-system.cponline.cnipa.gov.cn/retrieveList?prevPageTit=changgui.
[17]   Tong Y, Li Y, Guo Y H, et al. A method of extracting polyhydroxyalkanoate by ultrasonography with high temperature and high pressure:China, CN111346580B. 2020-12-11[2023-07-20]. https://pss-system.cponline.cnipa.gov.cn/retrieveList?prevPageTit=changgui.
[18]   佟毅, 李义, 郭元亨, 等. 氨水结合超声提取聚羟基脂肪酸酯的方法和系统: 中国, CN111333822B. 2022-04-08[2023-07-20]. https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui.
[18]   Tong Y, Li Y, Guo Y H, et al. A method for extracting polyhydroxyalkanoate by ultrasound combined with ammonium hydroxide: China, CN111333822B. 2022-04-08[2023-07-20]. https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui.
[19]   Peng Y C, Lo C W, Wu H S. The isolation of poly(3-hydroxybutyrate) from recombinant Escherichia coli XL1-blue using the digestion method. The Canadian Journal of Chemical Engineering, 2013, 91(1): 77-83.
doi: 10.1002/cjce.v91.1
[20]   Xiong B W, Fang Q, Wei T, et al. Chemical digestion method to promote activated sludge cell wall breaking and optimize the polyhydroxyalkanoate (PHA) extraction process. International Journal of Biological Macromolecules, 2023, 240: 124369.
doi: 10.1016/j.ijbiomac.2023.124369
[21]   Venkateswar Reddy M, Mawatari Y, Yajima Y, et al. Production of poly-3-hydroxybutyrate(P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) from synthetic wastewater using Hydrogenophaga palleronii. Bioresource Technology, 2016, 215: 155-162.
doi: S0960-8524(16)30311-X pmid: 26995321
[22]   Aramvash A, Gholami-Banadkuki N, Moazzeni-Zavareh F, et al. An environmentally friendly and efficient method for extraction of PHB biopolymer with non-halogenated solvents. Journal of Microbiology and Biotechnology, 2015, 25(11): 1936-1943.
doi: 10.4014/jmb.1505.05053 pmid: 26198125
[23]   Ramsay J A, Berger E, Voyer R, et al. Extraction of poly-3-hydroxybutyrate using chlorinated solvents. Biotechnology Techniques, 1994, 8(8): 589-594.
doi: 10.1007/BF00152152
[24]   de Souza Reis G A, Michels M H A, Fajardo G L, et al. Optimization of green extraction and purification of PHA produced by mixed microbial cultures from sludge. Water, 2020, 12(4): 1185.
doi: 10.3390/w12041185
[25]   Fiorese M L, Freitas F, Pais J, et al. Recovery of polyhydroxybutyrate (PHB) from Cupriavidus necator biomass by solvent extraction with 1, 2-propylene carbonate. Engineering in Life Sciences, 2009, 9(6): 454-461.
doi: 10.1002/elsc.v9:6
[26]   Aramvash A, Gholami-Banadkuki N, Seyedkarimi M S. An efficient method for the application of PHA-poor solvents to extract polyhydroxybutyrate from Cupriavidus necator. Biotechnology Progress, 2016, 32(6): 1480-1486.
doi: 10.1002/btpr.2346 pmid: 27557151
[27]   韦童. 提取方法对活性污泥中聚羟基烷酸酯(PHA)回收效果的影响研究. 广州: 广州大学, 2022.
[27]   Wei T. Effect of extraction methods on the recovery of polyhydroxyalkanoate (PHA) from activated sludge. Guangzhou: Guangzhou University. 2022.
[28]   杨继帅, 杨宏宇, 刘兴甜, 等. 聚羟基脂肪酸酯的提取方法: 中国, CN 115786411A. 2023-03-14[2023-07-20].https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui.
[28]   Yang J S, Yang Y H, Liu X T, et al. Extraction method of polyhydroxyalkanoates: China, CN115786411A. 2023-03-14[2023-07-20].https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui.
[29]   叶健文, 谢鑫颖, 林艺娜, 等. 一种高效提取并纯化高纯度聚羟基脂肪酸酯的方法: 中国, CN115807044A. 2023-03-17[2023-07-20]. https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui
[29]   Ye J W, Xie X Y, Lin Y N, et al. A highly efficient method for extraction and purification of high-purity polyhydroxyalkanoates: China, CN115807044A. 2023-03-17[2023-07-20]. https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui.
[30]   Kourmentza C, Plácido J, Venetsaneas N, et al. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering, 2017, 4(4): 55.
doi: 10.3390/bioengineering4020055
[31]   Jiang Y, Mikova G, Kleerebezem R, et al. Feasibility study of an alkaline-based chemical treatment for the purification of polyhydroxybutyrate produced by a mixed enriched culture. AMB Express, 2015, 5(1): 5.
doi: 10.1186/s13568-015-0096-5 pmid: 25642402
[32]   Anis S N S, Iqbal N M, Kumar S, et al. Increased recovery and improved purity of PHA from recombinant Cupriavidus necator. Bioengineered, 2013, 4(2): 115-118.
doi: 10.4161/bioe.22350
[33]   Anis S N S, Md Iqbal N, Kumar S, et al. Effect of different recovery strategies of P(3HB-co-3HHx) copolymer from Cupriavidus necator recombinant harboring the PHA synthase of Chromobacterium sp.USM2. Separation and Purification Technology, 2013, 102: 111-117.
doi: 10.1016/j.seppur.2012.09.036
[34]   Villano M, Valentino F, Barbetta A, et al. Polyhydroxyalkanoates production with mixed microbial cultures: from culture selection to polymer recovery in a high-rate continuous process. New Biotechnology, 2014, 31(4): 289-296.
doi: 10.1016/j.nbt.2013.08.001 pmid: 23954657
[35]   Divyashree M S, Shamala T R, Rastogi N K. Isolation of polyhydroxyalkanoate from hydrolyzed cells of Bacillus flexus using aqueous two-phase system containing polyethylene glycol and phosphate. Biotechnology and Bioprocess Engineering, 2009, 14(4): 482-489.
doi: 10.1007/s12257-008-0119-z
[36]   Leong Y K, Lan J C W, Loh H S, et al. Cloud-point extraction of green-polymers from Cupriavidus necator lysate usingthermoseparating-based aqueous two-phase extraction. Journal of Bioscience and Bioengineering, 2017, 123(3): 370-375.
doi: 10.1016/j.jbiosc.2016.09.007
[37]   Khosravi-Darani K, Vasheghani-Farahani E, Shojaosadati S A, et al. Effect of process variables on supercritical fluid disruption of Ralstonia eutropha cells for poly(R-hydroxybutyrate) recovery. Biotechnology Progress, 2004, 20(6): 1757-1765.
doi: 10.1021/bp0498037 pmid: 15575709
[38]   Yılmaz Nayır T, Konuk S, Kara S. Extraction of polyhydroxyalkanoate from activated sludge using supercritical carbon dioxide process and biopolymer characterization. Journal of Biotechnology, 2023, 364: 50-57.
doi: 10.1016/j.jbiotec.2023.01.011
[39]   Koller M, Niebelschütz H, Braunegg G. Strategies for recovery and purification of poly [(R)-3-hydroxyalkanoates](PHA) biopolyesters from surrounding biomass. Engineering in Life Sciences, 2013, 13(6): 549-562.
doi: 10.1002/elsc.v13.6
[40]   Berger E, Ramsay B A, Ramsay J A, et al. PHB recovery by hypochlorite digestion of non-PHB biomass. Biotechnology Techniques, 1989, 3(4): 227-232.
doi: 10.1007/BF01876053
[41]   Madkour M H, Heinrich D, Alghamdi M A, et al. PHA recovery from biomass. Biomacromolecules, 2013, 14(9): 2963-2972.
doi: 10.1021/bm4010244 pmid: 23875914
[42]   Iqbal M, Tao Y F, Xie S Y, et al. Aqueous two-phase system (ATPS): an overview and advances in its applications. Biological Procedures Online, 2016, 18: 18.
pmid: 27807400
[43]   Hejazi P, Vasheghani-Farahani E, Yamini Y. Supercritical fluid disruption of Ralstonia eutropha for poly(β-hydroxybutyrate) recovery. Biotechnology Progress, 2003, 19(5): 1519-1523.
doi: 10.1021/bp034010q
[44]   Kunasundari B, Sudesh K. Isolation and recovery of microbial polyhydroxyalkanoates. Express Polymer Letters, 2011, 5(7): 620-634.
doi: 10.3144/expresspolymlett.2011.60
[45]   佟毅, 李义, 刘安妮, 等. 溶菌酶结合SDS下利用超声提取聚羟基脂肪酸酯的方法和系统: 中国, CN111393625B. 2020-09-01[2023-07-20]. https://pss-system.cponline.cnipa.gov.cn/retrieveList?prevPageTit=changgui.
[45]   Tong Y, Li Y, Liu A N, et al. A method for ultrasonic extraction of polyhydroxyalkanoate by lysozyme combined with SDS: China, CN111393625B. 2020-09-01[2023-07-20]. https://pss-system.cponline.cnipa.gov.cn/retrieveList?prevPageTit=changgui.
[46]   Kapritchkoff F M, Viotti A P, Alli R C P, et al. Enzymatic recovery and purification of polyhydroxybutyrate produced by Ralstonia eutropha. Journal of Biotechnology, 2006, 122(4): 453-462.
pmid: 16253372
[47]   Lee S Y, Show P L, Ko C M, et al. A simple method for cell disruption by immobilization of lysozyme on the extrudate-shaped Na-Y zeolite: Recirculating packed bed disruption process. Biochemical Engineering Journal, 2019, 141: 210-216.
doi: 10.1016/j.bej.2018.10.016
[48]   Kunasundari B, Arza C R, Maurer F H J, et al. Biological recovery and properties of poly(3-hydroxybutyrate) from Cupriavidus necator H16. Separation and Purification Technology, 2017, 172: 1-6.
doi: 10.1016/j.seppur.2016.07.043
[49]   Martínez V, Jurkevitch E, García J L, et al. Reward for Bdellovibrio bacteriovorus for preying on a polyhydroxyalkanoate producer. Environmental Microbiology, 2013, 15(4): 1204-1215.
doi: 10.1111/emi.2013.15.issue-4
[50]   安柏霖, 王艳怡, 钟超. 合成生物技术在新材料发展中的应用. 生命科学, 2021, 33(12): 1551-1559.
[50]   An B L, Wang Y Y, Zhong C. Design and production of new materials by synthetic biology. Chinese Bulletin of Life Sciences, 2021, 33(12): 1551-1559.
[51]   于慧敏, 史悦, 孙旭东, 等. 基于λ噬菌体裂解基因表达的PHB分离新工艺. 化工学报, 2004, 55(4): 623-628.
[51]   Yu H M, Shi Y, Sun X D, et al. New technique for recovery of PHB from recombinant Escherichia coli based on expression of lytic genes of phage λ with S amber mutation. Journal of Chemical Industry and Engineering (China), 2004, 55(4): 623-628.
[52]   Madison L L, Huisman G W. Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiology and Molecular Biology Reviews: MMBR, 1999, 63(1): 21-53.
doi: 10.1128/MMBR.63.1.21-53.1999
[53]   Pötter M, Müller H, Reinecke F, et al. The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology, 2004, 150(7): 2301-2311.
doi: 10.1099/mic.0.26970-0
[54]   Rho J K, Choi M H, Gutierrez M, et al. Amorphous poly(3-hydroxybutyrate) nanoparticles prepared with recombinant phasins and PHB depolymerase. Journal of Applied Polymer Science, 2014, 131(22): 41074.
[55]   Maehara A, Ueda S, Nakano H, et al. Analyses of a polyhydroxyalkanoic acid granule-associated 16-kilodalton protein and its putative regulator in the pha locus of Paracoccus denitrificans. Journal of Bacteriology, 1999, 181(9): 2914-2921.
pmid: 10217786
[56]   Mergulhão F J M, Summers D K, Monteiro G A. Recombinant protein secretion in Escherichia coli. Biotechnology Advances, 2005, 23(3): 177-202.
doi: 10.1016/j.biotechadv.2004.11.003 pmid: 15763404
[57]   Kenny B, Haigh R, Holland I B. Analysis of the haemolysin transport process through the secretion from Escherichia coli of PCM, CAT or β-galactosidase fused to the Hly C-terminal signal domain. Molecular Microbiology, 1991, 5(10): 2557-2568.
pmid: 1791766
[58]   Linton E, Walsh M K, Sims R C, et al. Translocation of green fluorescent protein by comparative analysis with multiple signal peptides. Biotechnology Journal, 2012, 7(5): 667-676.
doi: 10.1002/biot.201100158 pmid: 21834133
[59]   Rahman A, Linton E, Hatch A D, et al. Secretion of polyhydroxybutyrate in Escherichia coli using a synthetic biological engineering approach. Journal of Biological Engineering, 2013, 7(1): 24.
doi: 10.1186/1754-1611-7-24 pmid: 24139229
[60]   Biopolymer T. About us. [2023-07-20].http://www.tianan-enmat.com/#.
[61]   湛江市生态环境局. 年产1000吨聚羟基脂肪酸酯(PHA)项目环境影响报告书受理公告. [2023-07-20].https://www.zhanjiang.gov.cn/zjsfw/bmdh/sthjj/zwgk/xzgs/content/post_1541397.html.
[61]   Zhanjinag Environmental Protection Bureau. Announcement of the environmental impact report acceptance report of 1000 tons of polyhydroxyalkanoates (PHA). [2023-07-20].https://www.zhanjiang.gov.cn/zjsfw/bmdh/sthjj/zwgk/xzgs/content/post_1541397.html.
[62]   盐城市滨海生态环境局.2022年1月19日-21日盐城市滨海生态环境局审批的项目. [2023-07-20].http://www.binhai.gov.cn/art/2022/1/25/art_25884_3800830.html.
[62]   Yancheng Binhai Ecological Environment Bureau.Project approved by January 19th to 21st, 2022 to 21st to the Yancheng Binhai Ecological Environment Bureau. [2023-07-20].http://www.binhai.gov.cn/art/2022/1/25/art_25884_3800830.html.
[63]   宜昌市生态环境局. 湖北微琪生物科技有限公司年产3万吨合成生物PHA可降解材料绿色智能制造项目环境影响报告书(征求意见稿)公示. [2023-07-20].http://hbj.yichang.gov.cn/content-42531-991001-1.html.
[63]   Yichang Environmental Protection Bureau. Hubei Weiqi Biotechnology Co., Ltd. annual output of 30,000 tons of synthetic biological PHA can be degradable material green intelligent manufacturing project environment impact report (for comments draft). [2023-07-20].http://hbj.yichang.gov.cn/content-42531-991001-1.html.
[64]   陈光辉, 吕士军, 应伟东, 等. 一种从发酵液中直接分离提纯聚羟基烷酸酯的方法: 中国, CN115058461A. 2022-06-20[2023-07-20]. https://pss-system.cponline.cnipa.gov.cn/retrieveList?prevPageTit=changgui.
[64]   Chen G H, Lv S J, Ying W D, et al. A method for directly separating and purifying polyhydroxyalkanoates (PHAs) from fermentation broth:China, CN115058461A. 2022-06-20[2023-07-20]. https://pss-system.cponline.cnipa.gov.cn/retrieveList?prevPageTit=changgui.
[65]   Koller M, Mukherjee A. A new wave of industrialization of PHA biopolyesters. Bioengineering (Basel, Switzerland), 2022, 9(2): 74.
[1] SHANG Hua-rong, SUN Jian-zhong, ZHU Dao-chen. Research Progress of Microbial Depolymerization of Lignin to Synthesize Polyhydroxyalkanoates[J]. China Biotechnology, 2023, 43(2/3): 152-164.
[2] Zhi-qiang ZHAO,Tamekou Stephen LACMATA,Mo XIAN,Xiu-tao LIU,Xin-jun FENG,Guang ZHAO. Biosynthesis of Poly (3-hydroxypropionate-co-lactate) from Glycerol by Engineered Escherichia coli[J]. China Biotechnology, 2018, 38(2): 46-53.
[3] DOU Yi-han, LI Ying, ZHAO Peng, FAN Ru-ting, TIAN Ping-fang. Metabolic Engineering of Klebsiella pneumoniae for the Production of Poly(3-Hydroxypropionate) from Glycerol[J]. China Biotechnology, 2017, 37(6): 86-92.
[4] GAO Cui-juan, LIN Carol Sze-ki, QI Qing-sheng. Production of Medium-chain-length Polyhydroxyalkanoates by Recombinant Yarrowia lipolytica Through Metabolic Engineering[J]. China Biotechnology, 2016, 36(5): 53-58.
[5] HU Feng-Qiang, HUI Jing-. Biomaterial Polyhydroxyalkanoate Synthesized from Renewable Biodiesel Coproduct[J]. China Biotechnology, 2009, 29(11): 112-116.