Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (11): 8-15    DOI: 10.13523/j.cb.2305027
    
Fish Gelatin Modification Using Prokaryotic Expression and Cell Surface Display Proline Hydroxylases
HUANG Ming-zhu1,2,3,SHEN Qi-chang2,3,QIN Chun-yan2,3,XU Yang3,WEI Yi-ran3,CHEN Xue-lan1,2,3,*()
1 National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
2 School of Life Science, Jiangxi Normal University, Nanchang 330022, China
3 School of Health, Jiangxi Normal University, Nanchang 330022, China
Download: HTML   PDF(1027KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The poor gel properties of fish gelatin limit its commercial application. Enzyme-catalyzed modification of fish gelatin has great advantages such as environmental friendliness, safety and high efficiency. However, there are few gelatin-modified enzymes reported at present, and most of them are covalent cross-linking enzymes, which easily make gelatin form thermal irreversible gel. In this study, two proline hydroxylases that increase the non-covalent action of collagen were cloned and expressed in prokaryotic cells. After purification, the fish gelatin was catalyzed respectively using two proline hydroxylases. The results show that the two enzymes have the effect of improving the gel strength and texture characteristics of fish gelatin. In addition, the surface display technology of Corynebacterium crenatum was studied. The two enzymes were displayed on the surface of C. crenatum, and an immobilized enzyme system with C. crenatum as the carrier was prepared for studying the modification effect of two immobilized enzyme systems on fish gelatin. This study has enriched the catalytic enzyme system of fish gel and provided a new idea for the catalytic modification of fish gelatin.



Key wordsSurface display technology      Fish gelatin      Gel strength      Texture analysis     
Received: 19 May 2023      Published: 01 December 2023
ZTFLH:  Q814  
Corresponding Authors: *Xue-lan CHEN     E-mail: xuelanchen162@163.com
Cite this article:

HUANG Ming-zhu, SHEN Qi-chang, QIN Chun-yan, XU Yang, WEI Yi-ran, CHEN Xue-lan. Fish Gelatin Modification Using Prokaryotic Expression and Cell Surface Display Proline Hydroxylases. China Biotechnology, 2023, 43(11): 8-15.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2305027     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I11/8

引物名称 序列 目的
pgsA-s ATTAATTAAGCTTGCATGCCTATGAAAAAAGAACTGAGCTTTCATG 扩增pgsA ORF
pgsA-x TCCAGTGAAAAGTTCTTCTCGTTTATGCATTTTAGATTTTAGTTTATCGCTATGATCAA 扩增pgsA ORF
pgsA/gfp-s TTGATCATAGCGATAAACTAAAATCTAAAATGCATAAACGAGAAGAACTTTTCACTGGA 通过搭桥PCR连接pgsAgfp
gfp-x CTGAATTCGAGCTCGGTACCCTTATTATTTGTAGAGCTCATCCATGCCATGT 扩增gfp ORF
ncgl1337-s ATTAATTAAGCTTGCATGCCTATGGCTCAGCGAAAACTGGCCTCTGTG 扩增ncgl1337跨膜区
ncgl1337-x CCAGTGAAAAGTTCTTCTCGTTTATGCATAGCCACACCACCACTTGAGGTGAGTGC 扩增ncgl1337跨膜区
ncgl1337/gfp-s GCACTCACCTCAAGTGGTGGTGTGGCTATGCATAAACGAGAAGAACTTTTCACTGG 通过搭桥PCR连接ncgl1337和gfp
proH-s ATTAATTAAGCTTGCATGCCTATGGATCTTTCCGTTCTCA 扩增proH ORF
proH-x TCCAGTGAAAAGTTCTTCTCGTTTATGCATGGAAGAGAGCTTATCCAGGTT 扩增proH ORF
proH/gfp-s AACCTGGATAAGCTCTCTTCCATGCATAAACGAGAAGAACTTTTCACTGGA 通过搭桥PCR连接proHgfp
pbp4h/pgsA-s TTGATGTTGATCATAGCGATAAACTAAAATCTAAAATGACAAATAAATTTATTTCGTACAATA 扩增pbp4h ORF,通过搭桥PCR连接pgsApbp4h
pbp4h-x CTGAATTCGAGCTCGGTACCTTATTTAACAGCACGGATCCATTGGTTCGCG 扩增pbp4h ORF
pbp4h-s ATTAATTAAGCTTGCATGCCTATGCATCATCATCATCATCATACAAATAAATTTATTTCG
TACAATA
bap4h/pgsA -s TTGATGTTGATCATAGCGATAAACTAAAATCTAAAATGACAAACAACAATCAAATAGG
TGA
扩增pbp4h ORF,通过搭桥PCR连接pgsApap4h
bap4h-x CTGAATTCGAGCTCGGTACCTTACTTATAAGTACCTCTTCTCACCCAC 扩增bap4h ORF
bap4h-s ATTAATTAAGCTTGCATGCCTATGCATCATCATCATCATCATACAAACAACAATCAAAT
AGGTGA
Table 1 Primers used in this study
Fig.1 SDS-PAGE of recombination protein M is the protein marker, the arrow indicated the purpose band, lanes 3 and 4 are samples induced without IPTG as control, and lanes 1,2,5 and 6 are Pbp4h fermentation samples, purified Pbp4h, Bap4h fermentation samples, and purified Bap4h, respectively
Vmax /[μmol/ (mL·min) Km /(μmol/mL) Kcat /s-1 Kcat/Km /[mL/(μmol·s)]
Pbp4h 2.46 952.51 352.40 0.37
Bap4h 3.70 1650.11 473.05 0.29
PgsA-Pbp4h 1.63 359.73 - -
PgsA-Bap4h 1.45 292.84 - -
Table 2 Kinetic parameter of enzymes
Fig.2 Effect of enzyme catalysis on gel strength
样品 对照组 Bap4h Pbp4h
硬度/g 553.11±8.48a 570.12±5.94b 579.75±9.06b
黏附性/(g.s) -23.72±0.71a -20.90±0.55c -22.52±0.37b
弹性 0.97±0.02a 0.94±0.03a 0.94±0.01a
黏结性 0.78±0.01a 0.79±0.04a 0.83±0.02b
胶黏性/g 467.45±15.00a 504.52±17.10b 492.66±13.02a
咀嚼性/g 385.91±5.70a 425.28±9.48b 416.16±3.88b
弹力 0.85±0.12a 0.88±0.03b 0.82±0.11a
Table 3 Effect of enzymatic catalysis on textural properties
Fig.3 Construction of Corynebacterium crenatum surface display system A. PCR fusion fragment; M is DNA marker, lanes 1-7 are gfp, ncgl1337-gfp, ncgl1337 transmembrane region sequence, pgsA-gfp, pgsA, proH-gfp, proH B. Fluorescence microscope observation C.Fluorescence intensity changes during liquid culture D. Each OD fluorescence intensity of each growth period
Fig.4 Effect of cells display the enzyme system catalysis on gel strength
样品 对照组 Bap4h Pbp4h
硬度/g 553.51±7.12a 574.56±5.70b 576.33±7.74b
黏附性/(g.s) -23.63±0.76a -20.64±0.29a -21.95±0.72b
弹性 0.94±0.02a 0.96±0.01a 0.95±0.02a
黏结性 0.77±0.02a 0.81±0.02b 0.8±0.05a
胶黏性/g 483.74±12.05a 499.13±9.97a 497.22±14.52a
咀嚼性/g 404.17±5.46a 425.7±6.67b 428.33±7.05b
弹力 0.84±0.11a 0.87±0.04a 0.85±0.02a
Table 4 Effect of cells display the enzyme system catalysis on textural properties
[1]   Laura M, Luca P, Silvia F, et al. Characterization of gelatin hydrogels derived from different animal sources. Materials Letters, 2020, 272: 1-4.
[2]   Huang T, Tu Z, Shangguan X, Sha X, et al. Fish gelatin modifications: a comprehensive review. Trends in Food Science & Technology, 2019, 86: 260-269.
[3]   Zhang Y L, Guo S L, Fu G M, et al. Transglutaminase-catalyzed modification of fish skin gelatin enhanced the protection of microcapsules to Limosilactobacillus reuteri. Food Bioscience, 2022, 50: 101961.
doi: 10.1016/j.fbio.2022.101961
[4]   Jafari H, Lista A, Siekapen M M, et al. Fish collagen: extraction, characterization, and applications for biomaterials engineering. Polymers, 2020, 12(10): 2230.
doi: 10.3390/polym12102230
[5]   Tu Z C, Huang T, Wang H, et al. Physico-chemical properties of gelatin from bighead carp (Hypophthalmichthys nobilis) scales by ultrasound-assisted extraction. Journal of Food Science and Technology, 2015, 52(4): 2166-2174.
doi: 10.1007/s13197-013-1239-9
[6]   Sung W C, Chen Z Y. UV treatment and γ irradiation processing on improving porcine and fish gelatin and qualities of their premix mousse. Radiation Physics and Chemistry, 2014, 97: 208-211.
doi: 10.1016/j.radphyschem.2013.11.038
[7]   Pourjabbar B, Biazar E, Heidari Keshel S, et al. Improving the properties of fish skin collagen/silk fibroin dressing by chemical treatment for corneal wound healing. International Wound Journal, 2023, 20(2): 484-498.
doi: 10.1111/iwj.v20.2
[8]   Azeredo H M C, Waldron K W. Crosslinking in polysaccharide and protein films and coatings for food contact :a review. Trends in Food Science & Technology, 2016, 52: 109-122.
[9]   Hu Z Z, Sha X M, Huang T, et al.Microbial transglutaminase(MTGase) modified fish gelatin-γ-polyglutamic acid (γ-PGA): Rheological behavior, gelling properties, and structure. Food Chemistry, 2021, 348: 129093.
doi: 10.1016/j.foodchem.2021.129093
[10]   Chen H R, Wu D, Ma W C, et al. Strong fish gelatin hydrogels enhanced by carrageenan and potassium sulfate. Food Hydrocolloids, 2021, 119: 106841.
doi: 10.1016/j.foodhyd.2021.106841
[11]   Ilesanmi O S, Adedugbe O F, Adewale I O. Potentials of purified tyrosinase from yam (Dioscorea spp.)as a biocatalyst in the synthesis of cross-linked protein networks. Heliyon, 2021, 7(8): e07831.
doi: 10.1016/j.heliyon.2021.e07831
[12]   Han L, Zhao Y K, Cui S, et al. Redesigning of microbial cell surface and its application to whole-cell biocatalysis and biosensors. Applied Biochemistry and Biotechnology, 2018, 185(2): 396-418.
doi: 10.1007/s12010-017-2662-6 pmid: 29168153
[13]   Schnicker N J, Dey M. Bacillus anthracis prolyl 4-hydroxylase modifies collagen-like substrates in asymmetric patterns. The Journal of Biological Chemistry, 2016, 291(25): 13360-13374.
doi: 10.1074/jbc.M116.725432
[14]   Eriksson M, Myllyharju J, Tu H M, et al. Evidence for 4-hydroxyproline in viral proteins. Journal of Biological Chemistry, 1999, 274(32): 22131-22134.
doi: 10.1074/jbc.274.32.22131 pmid: 10428773
[15]   Sow L C, Yang H S. Effects of salt and sugar addition on the physicochemical properties and nanostructure of fish gelatin. Food Hydrocolloids, 2015, 45: 72-82.
doi: 10.1016/j.foodhyd.2014.10.021
[16]   Bella J. Collagen structure: new tricks from a very old dog. The Biochemical Journal, 2016, 473(8): 1001-1025.
doi: 10.1042/BJ20151169
[17]   Huang T, Tu Z C, Shangguan X C, et al. Rheological behavior, emulsifying properties and structural characterization of phosphorylated fish gelatin. Food Chemistry, 2018, 246: 428-436.
doi: S0308-8146(17)31962-3 pmid: 29291869
[18]   Vijayasarathy M, Balaram P. Cone snail prolyl-4-hydroxylase α-subunit sequences derived from transcriptomic data and mass spectrometric analysis of variable proline hydroxylation in C. amadis venom. Journal of Proteomics, 2019, 194: 37-48.
doi: S1874-3919(18)30457-3 pmid: 30593932
[19]   Langley G W, Abboud M I, Lohans C T, et al. Inhibition of a viral prolyl hydroxylase. Bioorganic & Medicinal Chemistry, 2019, 27(12): 2405-2412.
doi: 10.1016/j.bmc.2019.01.018
[20]   Chen H R, Wu D, Ma W C, et al. Strong fish gelatin hydrogels double crosslinked by transglutaminase and carrageenan. Food Chemistry, 2022, 376: 131873.
doi: 10.1016/j.foodchem.2021.131873
[21]   黄明珠, 姚坤, 宋卓琳, 等. 细胞表面展示技术在环境修复方面的研究进展. 中国生物工程杂志, 2022, 42(9): 105-115.
[21]   Huang M Z, Yao K, Song Z L, et al. Research progress of cell surface display technology in environmental remediation. China Biotechnology, 2022, 42(9): 105-115.
[22]   Chen Z Z, Wang Y Y, Cheng Y Y, et al. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Science of the Total Environment, 2020, 709: 136138.
doi: 10.1016/j.scitotenv.2019.136138
[23]   Wang Y Y, Selvamani V, Yoo I K, et al. A novel strategy for the microbial removal of heavy metals: cell-surface display of peptides. Biotechnology and Bioprocess Engineering, 2021, 26(1): 1-9.
doi: 10.1007/s12257-020-0218-z
[24]   Liu Z, Ho S H, Hasunuma T, et al. Recent advances in yeast cell-surface display technologies for waste biorefineries. Bioresource Technology, 2016, 215: 324-333.
doi: S0960-8524(16)30435-7 pmid: 27039354
[1] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[2] Yi-ying WANG,Hai-rong CHENG. Cell Surface-Displaying the Lactose Hydrolase on Yarrowia lipolytica: a New Approach to Lactose Hydrolysis[J]. China Biotechnology, 2018, 38(8): 41-49.
[3] . Differentiation of fish gelatin from bovine/porcine gelatin by tandem mass spectrometry[J]. China Biotechnology, 2009, 29(06): 101-107.