Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (11): 66-77    DOI: 10.13523/j.cb.2304009
    
Advances in Programmed Cell Death in Staphylococcus aureus Infection
WU Zhi-hang1,2,3,PAN Hai-bang1,**(),RONG Yao1,TANG Ming-zheng1,CUI Yan1,2,3,WANG Tian-ming1,2,3
1 The First College of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
2 Gansu Provincial Engineering Laboratory for the Creation of New Traditional Chinese Medicine Products,Lanzhou 730000, China
3 Gansu Provincial Key Laboratory of Chinese Medicine Formulas Excavation and Innovative Transformation,Lanzhou 730000, China
Download: HTML   PDF(1125KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Programmed cell death (PCD) is a collective term for the intrinsically regulated death of cells. Different forms of cell death are caused by their own programmed regulation during the growth and development of organisms and stress responses to the environment and diseases. PCD includes apoptosis, pyroptosis, necroptosis, autophagy and ferroptosis. It is not only essential for the growth and development of organisms, but also plays an important role in intervening in the process of pathogens invasion. Staphylococcus aureus can regulate various forms of PCD such as apoptosis, pyroptosis, necroptosis and autophagy in host cells, thereby affecting bacterial infection. This article reviews the crosstalk between Staphylococcus aureus infection and PCD to further understand the relationship between Staphylococcus aureus and cell death, in order to provide new ideas for the diagnosis and treatment of clinical Staphylococcus aureus infection.



Key wordsProgrammed cell death (PCD)      Staphylococcus aureus      Apoptosis      Pyroptosis Autophagy      Ferroptosis     
Received: 04 April 2023      Published: 01 December 2023
ZTFLH:  Q93  
Corresponding Authors: **Hai-bang PAN     E-mail: phbwbb@126.com
Cite this article:

WU Zhi-hang, PAN Hai-bang, RONG Yao, TANG Ming-zheng, CUI Yan, WANG Tian-ming. Advances in Programmed Cell Death in Staphylococcus aureus Infection. China Biotechnology, 2023, 43(11): 66-77.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2304009     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I11/66

Fig.1 Apoptosis and pyroptosis mechanism diagram
Fig.2 Necroptosis and autophagy mechanism diagram
死亡类型 金黄色葡萄球菌细菌产物 受影响细胞 作用机制
细胞凋亡 α-溶血素 单核细胞 钾离子外流与线粒体膜电位破坏;二价钙离子超载
杀白细胞素(PVL) 白细胞 裂解白细胞
肠毒素B 单核细胞 上调单核细胞中TNF-α表达,外在途径诱导细胞凋亡
肠毒素H 牛乳腺上皮细胞 产生细胞毒性作用
肠毒素M 牛乳腺上皮细胞 促进TNF-α、IL-6、MCP-1、ICAM-1产生,激活NF-κB
EsxA、EsxB 上皮细胞 释放金黄色葡萄球菌,加重细菌感染
核酸酶和腺苷合成酶A 中性粒细胞、巨噬细胞 在中性粒细胞胞外诱捕网(NETs)中产生脱氧腺苷(dAdo),dAdo通过核苷转运蛋白1(hENT1)转运到巨噬细胞内,激活Caspase-3所依赖的细胞凋亡
中毒性休克综合征毒素-1(TSST-1) 血小板 激活Caspases-3,Bak上调和Bcl-XL下调,诱导血小板凋亡
葡萄球菌B 吞噬细胞 选择性切割吞噬细胞上的CD11b,表达磷脂酰丝氨酸;减少感染部位吞噬细胞的数量,促进金黄色葡萄球菌定植和传播
毒力因子蛋白A 成骨细胞 与成骨细胞直接结合,抑制成骨细胞增殖
焦亡 α-溶血素 巨噬细胞 激活NLRP3、Caspase-1依赖的焦亡途径
- 中性粒细胞 NLRP6负调控中性粒细胞;中性粒细胞募集增加、细菌杀伤力增强、ROS产生增多
杀白细胞素PVL 巨噬细胞、上皮细胞 刺激肺泡巨噬细胞释放IL-1β,IL-1β刺激肺上皮细胞分泌IL-8和单核细胞趋化蛋白-1
杀白细胞素AB 吞噬细胞、THP-1单核细胞 激活Caspase-1,促进IL-1β分泌并引起由ASC、NLRP3和LukAB受体CD11b介导的THP-1单核细胞坏死、焦亡
脂磷壁酸LTA 巨噬细胞 诱导NLRP6介导的Caspase-11激活,促进Caspase-1活化,释放IL-1β和IL-18,引起巨噬细胞焦亡
- 角质形成细胞 促进IL-1β、IL-18表达
- 乳腺上皮细胞 钾离子外排激活NLRP3炎症小体,导致ASC募集和Caspase-1活化,Caspase-1催化Gasdermin D形成N端活性产物GSDMD-NT,导致促炎细胞因子IL-1β、IL-18释放
- 小胶质细胞 诱导NLRP3炎症小体、凋亡相关斑点样蛋白(ASC),引起IL-1β、IL-18释放
穿孔素-2 表皮细胞 AIM2炎症小体活化,减少ASC、IL-1β生成,抑制表皮细胞焦亡与炎症反应
- 神经细胞 AIM2炎性小体引起ASC和Caspase-1募集,诱导炎症因子IL-1β释放
坏死性凋亡 α-毒素 上皮细胞 -
酚溶性调节肽PSM 吞噬细胞 诱导MLKL磷酸化,激活吞噬细胞坏死性凋亡
葡萄球菌超抗原蛋白SSL10 - 与TNFR1受体结合,激活信号通路RIPK1-RIPK3-MLKL和RIPK3-钙调蛋白依赖激酶II(CaMKII)-线粒体膜通透性转换孔(mPTP)通路
自噬 - 中性粒细胞PMN 与LC3-II和选择性自噬接头蛋白p62相关
- 牛巨噬细胞 自噬囊泡和LC3增加,p62减少
- 牛乳腺上皮细胞 LC3-II和选择性自噬接头蛋白p62表达增加,促进自噬体形成
- 巨噬细胞 激活磷脂酰肌醇3激酶/蛋白激酶B/Bcl-2同源结构域蛋白(PI3K/Akt/Beclin-1)信号通路抑制自噬
- 肥大细胞 激活PI3K/Akt信号通路抑制自噬,刺激肥大细胞释放炎症因子
- 牛乳腺上皮细胞 激活牛乳腺上皮细胞中的p38MAPK信号通路,磷酸化MAPK14,激活的MAPK14抑制自噬体成熟,阻止自噬体与酸性溶酶体融合,减少金黄色葡萄球菌诱导的细胞内自噬流动,下调LC3II/LC3I值并升高p62水平
- 巨噬细胞 TLR2/4受体被激活,磷酸化的JNK和ERK1/2通过MyD88介导的TAK1信号级联反应,促进巨噬细胞LC3合成,且通过cAMP-PKA-NF-κB-ATGs信号转导增加ATG5和ATG12转录,促进巨噬细胞自噬溶酶体形成
Table 1 Staphylococcus aureus intervention in programmed cell death
Fig.3 Ferroptosis mechanism diagram
[1]   Ashida H, Mimuro H, Ogawa M, et al. Cell death and infection: a double-edged sword for host and pathogen survival. Journal of Cell Biology, 2011, 195(6): 931-942.
doi: 10.1083/jcb.201108081 pmid: 22123830
[2]   Behar S M, Briken V. Apoptosis inhibition by intracellular bacteria and its consequence on host immunity. Current Opinion in Immunology, 2019, 60: 103-110.
doi: S0952-7915(19)30021-4 pmid: 31228759
[3]   Zhang X P, Hu X M, Rao X C. Apoptosis induced by Staphylococcus aureus toxins. Microbiological Research, 2017, 205: 19-24.
doi: 10.1016/j.micres.2017.08.006
[4]   David M Z, Daum R S. Community-associated methicillin-Resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clinical Microbiology Reviews, 2010, 23(3): 616-687.
doi: 10.1128/CMR.00081-09
[5]   Nössing C, Ryan K M. 50 years on and still very much alive: ‘Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics’. British Journal of Cancer, 2023, 128(3): 426-431.
doi: 10.1038/s41416-022-02020-0
[6]   Bedoui S, Herold M J, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nature Reviews Molecular Cell Biology, 2020, 21(11): 678-695.
doi: 10.1038/s41580-020-0270-8
[7]   Otto M. Staphylococcus aureus toxins. Current Opinion in Microbiology, 2014, 17: 32-37.
doi: 10.1016/j.mib.2013.11.004
[8]   Berends E T M, Zheng X H, Zwack E E, et al. Staphylococcus aureus impairs the function of and kills human dendritic cells via the LukAB toxin. mBio, 2019, 10(1): e01918-18.
[9]   Bu S, Xie Q, Chang W J, et al. LukS-PV induces mitochondrial-mediated apoptosis and G0/G1 cell cycle arrest in human acute myeloid leukemia THP-1 cells. The International Journal of Biochemistry & Cell Biology, 2013, 45(8): 1531-1537.
doi: 10.1016/j.biocel.2013.05.011
[10]   Imre G, Heering J, Takeda A N, et al. Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis. The EMBO Journal, 2012, 31(11): 2615-2628.
doi: 10.1038/emboj.2012.93
[11]   Stelzner K, Winkler A C, Liang C G, et al. Intracellular Staphylococcus aureus perturbs the host cell Ca2+ homeostasis to promote cell death. mBio, 2020, 11(6): e02250-e02220.
[12]   Tanzer M C. A proteomic perspective on TNF-mediated signalling and cell death. Biochemical Society Transactions, 2022, 50(1): 13-20.
doi: 10.1042/BST20211114 pmid: 35166321
[13]   Chi C Y, Lin C C, Liao I C, et al. Panton-valentine leukocidin facilitates the escape of Staphylococcus aureus from human keratinocyte endosomes and induces apoptosis. The Journal of Infectious Diseases, 2014, 209(2): 224-235.
doi: 10.1093/infdis/jit445
[14]   Zhang X P, Shang W L, Yuan J Z, et al. Positive feedback cycle of TNFα promotes staphylococcal enterotoxin B-induced THP-1 cell apoptosis. Frontiers in Cellular and Infection Microbiology, 2016, 6: 109.
pmid: 27709104
[15]   Zhao Y Y, Tang J N, Yang D R, et al. Staphylococcal enterotoxin M induced inflammation and impairment of bovine mammary epithelial cells. Journal of Dairy Science, 2020, 103(9): 8350-8359.
doi: S0022-0302(20)30492-6 pmid: 32622596
[16]   Korea C G, Balsamo G, Pezzicoli A, et al. Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells. Infection and Immunity, 2014, 82(10): 4144-4153.
doi: 10.1128/IAI.01576-14
[17]   Thammavongsa V, Missiakas D M, Schneewind O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science, 2013, 342(6160): 863-866.
doi: 10.1126/science.1242255 pmid: 24233725
[18]   Winstel V, Missiakas D, Schneewind O.Staphylococcus aureus targets the purine salvage pathway to kill phagocytes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): 6846-6851.
[19]   Winstel V, Schneewind O, Missiakas D. Staphylococcus aureus exploits the host apoptotic pathway to persist during infection. mBio, 2019, 10(6): e02270-19.
[20]   Guo M, Yi T T, Wang Q, et al. TSST-1 protein exerts indirect effect on platelet activation and apoptosis. Platelets, 2022, 33(7): 998-1008.
doi: 10.1080/09537104.2022.2026907
[21]   Smagur J, Guzik K, Magiera L, et al. A new pathway of staphylococcal pathogenesis: apoptosis-like death induced by staphopain B in human neutrophils and monocytes. Journal of Innate Immunity, 2008, 1(2): 98-108.
doi: 10.1159/000181014
[22]   Claro T, Widaa A, O’Seaghdha M, et al. Staphylococcus aureus protein A binds to osteoblasts and triggers signals that weaken bone in osteomyelitis. PLoS One, 2011, 6(4): e18748.
doi: 10.1371/journal.pone.0018748
[23]   Bauernfried S, Hornung V. Human NLRP1: from the shadows to center stage. The Journal of Experimental Medicine, 2022, 219(1): e20211405.
doi: 10.1084/jem.20211405
[24]   Saxena M, Yeretssian G. NOD-like receptors: master regulators of inflammation and cancer. Frontiers in Immunology, 2014, 5: 327.
doi: 10.3389/fimmu.2014.00327 pmid: 25071785
[25]   Broz P, Dixit V M. Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews Immunology, 2016, 16(7): 407-420.
doi: 10.1038/nri.2016.58 pmid: 27291964
[26]   Ball D P, Taabazuing C Y, Griswold A R, et al. Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Science Alliance, 2020, 3(3): e202000664.
[27]   Akbal A, Dernst A, Lovotti M, et al. How location and cellular signaling combine to activate the NLRP3 inflammasome. Cellular & Molecular Immunology, 2022, 19(11): 1201-1214.
[28]   Galozzi P, Bindoli S, Doria A, et al. The revisited role of interleukin-1 alpha and beta in autoimmune and inflammatory disorders and in comorbidities. Autoimmunity Reviews, 2021, 20(4): 102785.
doi: 10.1016/j.autrev.2021.102785
[29]   Rex D A B, Agarwal N, Keshava Prasad T S, et al. A comprehensive pathway map of IL-18-mediated signalling. Journal of Cell Communication and Signaling, 2020, 14(2): 257-266.
doi: 10.1007/s12079-019-00544-4 pmid: 31863285
[30]   Shi J J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015, 526(7575): 660-665.
doi: 10.1038/nature15514
[31]   Ding J J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016, 535(7610): 111-116.
doi: 10.1038/nature18590
[32]   Liu X, Zhang Z B, Ruan J B, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 2016, 535(7610): 153-158.
doi: 10.1038/nature18629
[33]   Tang Y S, Zhao Y H, Zhong Y, et al. Neferine inhibits LPS-ATP-induced endothelial cell pyroptosis via regulation of ROS/NLRP3/Caspase-1 signaling pathway. Inflammation Research, 2019, 68(9): 727-738.
doi: 10.1007/s00011-019-01256-6
[34]   Kayagaki N, Stowe I B, Lee B L, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526(7575): 666-671.
doi: 10.1038/nature15541
[35]   Craven R R, Gao X, Allen I C, et al. Staphylococcus aureus α-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS One, 2009, 4(10): e7446.
doi: 10.1371/journal.pone.0007446
[36]   Cohen T S, Boland M L, Boland B B, et al. S.aureus evades macrophage killing through NLRP3-dependent effects on mitochondrial trafficking. Cell Reports, 2018, 22(9): 2431-2441.
doi: 10.1016/j.celrep.2018.02.027
[37]   Ghimire L, Paudel S, Jin L L, et al. NLRP6 negatively regulates pulmonary host defense in Gram-positive bacterial infection through modulating neutrophil recruitment and function. PLoS Pathogens, 2018, 14(9): e1007308.
doi: 10.1371/journal.ppat.1007308
[38]   Holzinger D, Gieldon L, Mysore V, et al. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. Journal of Leukocyte Biology, 2012, 92(5): 1069-1081.
doi: 10.1189/jlb.0112014 pmid: 22892107
[39]   Melehani J H, James D B A, DuMont A L, et al. Staphylococcus aureus leukocidin A/B (LukAB) kills human monocytes via host NLRP3 and ASC when extracellular, but not intracellular. PLoS Pathogens, 2015, 11(6): e1004970.
doi: 10.1371/journal.ppat.1004970
[40]   Perret M, Badiou C, Lina G, et al. Cross-talk between Staphylococcus aureus leukocidins-intoxicated macrophages and lung epithelial cells triggers chemokine secretion in an inflammasome-dependent manner. Cellular Microbiology, 2012, 14(7): 1019-1036.
doi: 10.1111/cmi.2012.14.issue-7
[41]   Hara H, Seregin S S, Yang D H, et al. The NLRP6 inflammasome recognizes lipoteichoic acid and regulates gram-positive pathogen infection. Cell, 2018, 175(6): 1651-1664.e14.
doi: S0092-8674(18)31259-5 pmid: 30392956
[42]   Tweedell R E, Kanneganti T D. It’s just a phase: NLRP6 phase separations drive signaling. Cell Research, 2022, 32(2): 113-114.
doi: 10.1038/s41422-021-00594-7
[43]   Soong G, Chun J, Parker D, et al. Staphylococcus aureus activation of caspase 1/calpain signaling mediates invasion through human keratinocytes. The Journal of Infectious Diseases, 2012, 205(10): 1571-1579.
doi: 10.1093/infdis/jis244
[44]   Syed A K, Reed T J, Clark K L, et al. Staphlyococcus aureus phenol-soluble modulins stimulate the release of proinflammatory cytokines from keratinocytes and are required for induction of skin inflammation. Infection and Immunity, 2015, 83(9): 3428-3437.
doi: 10.1128/IAI.00401-15
[45]   Wang X Z, Liu M C, Geng N, et al. Staphylococcus aureus mediates pyroptosis in bovine mammary epithelial cell via activation of NLRP3 inflammasome. Veterinary Research, 2022, 53(1): 1-8.
doi: 10.1186/s13567-021-01016-7
[46]   Hanamsagar R, Torres V, Kielian T. Inflammasome activation and IL-1β/IL-18 processing are influenced by distinct pathways in microglia. Journal of Neurochemistry, 2011, 119(4): 736-748.
doi: 10.1111/j.1471-4159.2011.07481.x pmid: 21913925
[47]   Pastar I, Sawaya A P, Marjanovic J, et al. Intracellular Staphylococcus aureus triggers pyroptosis and contributes to inhibition of healing due to perforin-2 suppression. Journal of Clinical Investigation, 2021, 131(24): e133727.
doi: 10.1172/JCI133727
[48]   Hanamsagar R, Aldrich A, Kielian T. Critical role for the AIM2 inflammasome during acute CNS bacterial infection. Journal of Neurochemistry, 2014, 129(4): 704-711.
doi: 10.1111/jnc.12669 pmid: 24484406
[49]   Feng S Y, Yang Y J, Liu Z Z, et al. Intracellular bacteriolysis contributes to pathogenicity of Staphylococcus aureus by exacerbating AIM2-mediated inflammation and necroptosis. Virulence, 2022, 13(1): 1684-1696.
doi: 10.1080/21505594.2022.2127209
[50]   Sun L M, Wang H Y, Wang Z G, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 2012, 148(1-2): 213-227.
doi: 10.1016/j.cell.2011.11.031
[51]   Jiang Y P, Yu M, Hu X N, et al. STAT1 mediates transmembrane TNF-alpha-induced formation of death-inducing signaling complex and apoptotic signaling via TNFR1. Cell Death & Differentiation, 2017, 24(4): 660-671.
[52]   Li S, Zhang L, Yao Q, et al. Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature, 2013, 501(7466): 242-246.
doi: 10.1038/nature12436
[53]   Zhang J Q, Webster J D, Dugger D L, et al. Ubiquitin ligases cIAP1 and cIAP 2 limit cell death to prevent inflammation. Cell Reports, 2019, 27(9): 2679-2689.e3.
doi: 10.1016/j.celrep.2019.04.111
[54]   Varfolomeev E, Goncharov T, Vucic D. Immunoblot analysis of the regulation of TNF receptor family-induced NF-κB signaling by c-IAP proteins. NF-κB Transcription Factors. New York: Humana, 2021: 109-123.
[55]   Wang Y, Shan B, Liang Y S, et al. Parkin regulates NF-κB by mediating site-specific ubiquitination of RIPK1. Cell Death & Disease, 2018, 9(7): 1-11.
[56]   Schwarzer R, Laurien L, Pasparakis M.New insights into the regulation of apoptosis, necroptosis, and pyroptosis by receptor interacting protein kinase 1 and caspase-8. Current Opinion in Cell Biology, 2020, 63: 186-193.
doi: S0955-0674(20)30027-2 pmid: 32163825
[57]   Varfolomeev E, Vucic D. RIP1 post-translational modifications. Biochemical Journal, 2022, 479(9): 929-951.
doi: 10.1042/BCJ20210725 pmid: 35522161
[58]   Füllsack S, Rosenthal A, Wajant H, et al. Redundant and receptor-specific activities of TRADD, RIPK1 and FADD in death receptor signaling. Cell Death & Disease, 2019, 10(2): 1-19.
[59]   Newton K, Wickliffe K E, Dugger D L, et al. Cleavage of RIPK 1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature, 2019, 574(7778): 428-431.
doi: 10.1038/s41586-019-1548-x
[60]   Mocarski E S, Upton J W, Kaiser W J. Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nature Reviews Immunology, 2012, 12(2): 79-88.
doi: 10.1038/nri3131
[61]   Oberst A, Dillon C P, Weinlich R, et al. Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis. Nature, 2011, 471(7338): 363-367.
doi: 10.1038/nature09852
[62]   Vandenabeele P, Galluzzi L, Vanden Berghe T, et al. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Reviews Molecular Cell Biology, 2010, 11(10): 700-714.
doi: 10.1038/nrm2970 pmid: 20823910
[63]   Kaiser W J, Sridharan H, Huang C Z, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. The Journal of Biological Chemistry, 2013, 288(43): 31268-31279.
doi: 10.1074/jbc.M113.462341
[64]   Chen X, Li W J, Ren J M, et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Research, 2014, 24(1): 105-121.
doi: 10.1038/cr.2013.171 pmid: 24366341
[65]   Kitur K, Parker D, Nieto P, et al. Toxin-induced necroptosis is a major mechanism of Staphylococcus aureus lung damage. PLoS Pathogens, 2015, 11(4): e1004820.
doi: 10.1371/journal.ppat.1004820
[66]   Zhou Y, Niu C, Ma B, et al. Inhibiting PSMα-induced neutrophil necroptosis protects mice with MRSA pneumonia by blocking the agr system. Cell Death & Disease, 2018, 9(3): 1-14.
[67]   Jia N, Li G, Wang X, et al. Staphylococcal superantigen-like protein 10 induces necroptosis through TNFR1 activation of RIPK3-dependent signal pathways. Communications Biology, 2022, 5: 813.
doi: 10.1038/s42003-022-03752-8 pmid: 35962126
[68]   Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nature Reviews Molecular Cell Biology, 2018, 19(6): 349-364.
doi: 10.1038/s41580-018-0003-4 pmid: 29618831
[69]   Yu L, Chen Y, Tooze S A. Autophagy pathway: cellular and molecular mechanisms. Autophagy, 2018, 14(2): 207-215.
doi: 10.1080/15548627.2017.1378838 pmid: 28933638
[70]   Khandia R, Dadar M, Munjal A, et al. A comprehensive review of autophagy and its various roles in infectious, non-infectious, and lifestyle diseases: current knowledge and prospects for disease prevention, novel drug design, and therapy. Cells, 2019, 8(7): 674.
doi: 10.3390/cells8070674
[71]   Kim J, Guan K L. mTOR as a central hub of nutrient signalling and cell growth. Nature Cell Biology, 2019, 21(1): 63-71.
doi: 10.1038/s41556-018-0205-1 pmid: 30602761
[72]   Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Current Opinion in Cell Biology, 2010, 22(2): 132-139.
doi: 10.1016/j.ceb.2009.12.004 pmid: 20056399
[73]   Mizushima N. The ATG conjugation systems in autophagy. Current Opinion in Cell Biology, 2020, 63: 1-10.
doi: S0955-0674(19)30111-5 pmid: 31901645
[74]   Vozza E G, Mulcahy M E, McLoughlin R M. Making the most of the host; targeting the autophagy pathway facilitates Staphylococcus aureus intracellular survival in neutrophils. Frontiers in Immunology, 2021, 12: 667387.
doi: 10.3389/fimmu.2021.667387
[75]   Mulcahy M E, O’Brien E C, O’Keeffe K M, et al. Manipulation of autophagy and apoptosis facilitates intracellular survival of Staphylococcus aureus in human neutrophils. Frontiers in Immunology, 2020, 11: 565545.
doi: 10.3389/fimmu.2020.565545
[76]   Cai J, Li J, Zhou Y Q, et al. Staphylococcus aureus facilitates its survival in bovine macrophages by blocking autophagic flux. Journal of Cellular and Molecular Medicine, 2020, 24(6): 3460-3468.
doi: 10.1111/jcmm.v24.6
[77]   Wang H, Zhou Y Q, Zhu Q C, et al. Staphylococcus aureus induces autophagy in bovine mammary epithelial cells and the formation of autophagosomes facilitates intracellular replication of Staph. aureus. Journal of Dairy Science, 2019, 102(9): 8264-8272.
doi: 10.3168/jds.2019-16414
[78]   Lv Y X, Fang L, Ding P S, et al. PI3K/Akt-Beclin 1 signaling pathway positively regulates phagocytosis and negatively mediates NF-κB-dependent inflammation in Staphylococcus aureus-infected macrophages. Biochemical and Biophysical Research Communications, 2019, 510(2): 284-289.
doi: 10.1016/j.bbrc.2019.01.091
[79]   Tang Y L, Su R J, Gu Q Y, et al. PI3K/AKT-mediated autophagy inhibition facilitates mast cell activation to enhance severe inflammatory lung injury in influenza A virus- and secondary Staphylococcus aureus-infected mice. Antiviral Research, 2023, 209: 105502.
doi: 10.1016/j.antiviral.2022.105502
[80]   Neumann Y, Bruns S A, Rohde M, et al. Intracellular Staphylococcus aureus eludes selective autophagy by activating a host cell kinase. Autophagy, 2016, 12(11): 2069-2084.
pmid: 27629870
[81]   Wang R, Zhang W, Wang L M, et al. Intracellular Staphylococcus aureus inhibits autophagy of bovine mammary epithelial cells through activating p38α. Journal of Dairy Research, 2021, 88(3): 293-301.
doi: 10.1017/S0022029921000649
[82]   Keil E, Höcker R, Schuster M, et al. Phosphorylation of Atg 5 by the Gadd45β-MEKK4-p38 pathway inhibits autophagy. Cell Death & Differentiation, 2013, 20(2): 321-332.
[83]   Wang M Y, et al. Domain fusion TLR2- 4 enhances the autophagy-dependent clearance of Staphylococcus aureus in the genetic engineering goat. eLife, 2022, 11: 78044.
[84]   Soe Y M, Bedoui S, Stinear T P, et al. Intracellular Staphylococcus aureus and host cell death pathways. Cellular Microbiology, 2021, 23(5): e13317.
[85]   Tang D L, Kroemer G. Ferroptosis. Current Biology, 2020, 30(21): R1292-R1297.
doi: 10.1016/j.cub.2020.09.068
[86]   Stockwell B R, Angeli J P F, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2): 273-285.
doi: S0092-8674(17)31070-X pmid: 28985560
[87]   Kagan V E, Mao G W, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology, 2017, 13(1): 81-90.
doi: 10.1038/nchembio.2238 pmid: 27842066
[88]   Doll S, Proneth B, Tyurina Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature Chemical Biology, 2017, 13(1): 91-98.
doi: 10.1038/nchembio.2239 pmid: 27842070
[89]   Yuan H, Li X M, Zhang X Y, et al. Identification of ACSL 4 as a biomarker and contributor of ferroptosis. Biochemical and Biophysical Research Communications, 2016, 478(3): 1338-1343.
doi: 10.1016/j.bbrc.2016.08.124 pmid: 27565726
[90]   Gao M H, Yi J M, Zhu J J, et al. Role of mitochondria in ferroptosis. Molecular Cell, 2019, 73(2): 354-363.e3.
doi: S1097-2765(18)30936-5 pmid: 30581146
[91]   Tang D L, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications. Cell Research, 2021, 31(2): 107-125.
doi: 10.1038/s41422-020-00441-1 pmid: 33268902
[92]   Chu B, Kon N, Chen D L, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nature Cell Biology, 2019, 21(5): 579-591.
doi: 10.1038/s41556-019-0305-6 pmid: 30962574
[93]   Wang Z, Li H B, Zhou W, et al. Ferrous sulfate-loaded hydrogel cures Staphylococcus aureus infection via facilitating a ferroptosis-like bacterial cell death in a mouse keratitis model. Biomaterials, 2022, 290: 121842.
doi: 10.1016/j.biomaterials.2022.121842
[94]   Hu H Q, Hua shi yuan, Lin X H, et al. Hybrid biomimetic membrane coated particles-mediated bacterial ferroptosis for acute MRSA pneumonia. ACS Nano, 2023, 17(12): 11692-11712.
doi: 10.1021/acsnano.3c02365 pmid: 37310363
[95]   Xue Y, Zhang L, Liu F W, et al. Alkaline “nanoswords” coordinate ferroptosis-like bacterial death for antibiosis and osseointegration. ACS Nano, 2023, 17(3): 2711-2724.
doi: 10.1021/acsnano.2c10960
[96]   Zhou Y, Cai C Y, Wang C, et al. Ferric-loaded lipid nanoparticles inducing ferroptosis-like cell death for antibacterial wound healing. Drug Delivery, 2023, 30(1): 1-8.
[97]   Sun B H, Wang X Y, Ye Z Q, et al. Designing single-atom active sites on sp2-carbon linked covalent organic frameworks to induce bacterial ferroptosis-like for robust anti-infection therapy. Advanced Science, 2023, 10(13): e2207507.
[1] BAI Xue, YU Xin-yue, ZHEN Chun-yang, HOU Cong, LI Min. Mechanism of MiR-296-3p Regulating Granulosa Cell Apoptosis in Rats with Polycystic Ovary Syndrome[J]. China Biotechnology, 2023, 43(4): 20-29.
[2] XU Wei-min, DENG Xin, WU Rui. Research Progress on the Function of Pro-apoptotic Protein BAK and Its Role in Virus Infection[J]. China Biotechnology, 2023, 43(2/3): 130-140.
[3] WANG Ting,LIU Kai,LI Ke-ying,CHEN Xu,REN Guang-ming,YANG Xiao-ming. Knockdown of Usp13 Promotes Palmitic Acid-induced Apoptosis in Mouse Hepatocytes[J]. China Biotechnology, 2022, 42(4): 9-16.
[4] ZHANG Sai,YE Ji-wei,SHEN Yuan-jing,MU Ke-fei,GUO Xin-wu. Effects of miR-324-3p Targeting GPX4 on Ferroptosis in Prostate Cancer Cells[J]. China Biotechnology, 2022, 42(1/2): 72-79.
[5] TAO Shou-song,REN Guang-ming,YIN Rong-hua,YANG Xiao-ming,MA Wen-bing,GE Zhi-qiang. Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells[J]. China Biotechnology, 2021, 41(5): 1-7.
[6] DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+[J]. China Biotechnology, 2021, 41(4): 1-8.
[7] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[8] Ye LIU,Yue PAN,Wei ZHENG,Jing HU. miR-186-5p is Expressed Highly in Ethanol-induced Cardiomyocytes and Regulates Apoptosis by Target Gene XIAP[J]. China Biotechnology, 2019, 39(5): 53-62.
[9] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.
[10] Xiang HUANG,Jie YANG,Pei-yan HE,Zhi-hui WU,Hui-lan ZENG,Xin-Ning WANG,Jian-wei JIANG. Molecular Mechanism of Inducing 2774-C10 Cell Apoptosis and G1/S Cell Cycle Arrest by Ethanol Extract from Elephantopus mollis H.B.K.[J]. China Biotechnology, 2018, 38(4): 17-23.
[11] WANG Xi, CHEN Xi-ming, PU Tong-liang. Progress on High Efficient Expression and Application of Lysostaphin[J]. China Biotechnology, 2017, 37(9): 118-125.
[12] DAI Li-ting, WU Zhong-nan, HUANG Xiang, YANG Jie, ZENG Hui-lan, WANG Guo-cai, JIANG Jian-wei. Molecular Mechanism of Inducing GLC-82 Cells Apoptosis by Ethanol Extract from Wedelia prostrate(Hook.et Arn.) Hemsl[J]. China Biotechnology, 2017, 37(8): 1-7.
[13] XU An-jian, LI Yan-meng, LI Si-wen, WU Shan-na, ZHANG Bei, HUANG Jian. The Effect of PHP14 Knockdown on Lung Cancer Cells Apoptosis and Its Mechanism[J]. China Biotechnology, 2017, 37(7): 12-17.
[14] LI Yan-wei, MA Yi, HAN Lei, XIAO Xing, DANG Shi-ying, WEN Tao, WANG De-hua, FAN Zhi-yong. A Preliminary Study on Fas Apoptosis Inhibitory Molecule FAIM 1 Inducing and Simple Obesity[J]. China Biotechnology, 2017, 37(6): 37-42.
[15] BAI Xin-yan, WEN Li-min, WANG Yu-jing, WANG Hai-long, XIE Jun, GUO Rui. ANKRD49 Inhibits UV-induced Apoptosis of GC-1 Cells by Up-regulating Bcl-xL[J]. China Biotechnology, 2017, 37(4): 40-47.