Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (9): 105-112    DOI: 10.13523/j.cb.2303011
    
Advances in Aromatic L-amino Acid Decarboxylases
LIU Qing-hao1,LI Chen-xi1,BAO Xin-ru1,QI Feng1,2,**()
1 National and Local Joint Engineering Research Center for Industrial Microbial Fermentation Technology, College of Life Science, Fujian Normal University, Fuzhou 350117, China
2 Fujian Provincial Key Laboratory of Cell Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350108, China
Download: HTML   PDF(1697KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aromatic L-amino acid decarboxylase (AADC)’s role in living organisms is to decarboxylate aromatic L-amino acids into aromatic monoamines, and pyridoxal 5'-phosphate (PLP) is an essential coenzyme for its catalytic function. AADCs transform aromatic L-amino acids to aromatic monoamines, mainly including dopamine, serotonin, tyramine, and tryptamine. These aromatic monoamines are neurotransmitters that maintain normal physiological functions in living organisms and are also important precursors involved in the synthesis of some compounds. Futhermore, they can also be used as active ingredients in drugs to participate in the treatment of many human diseases, with promising applications. As the enzymes necessary for the biosynthesis of aromatic monoamines, AADCs have attracted more researches’ attention, and great progress has also been made in the biosynthesis of aromatic monoamines based on AADCs. Here several major AADCs are reviewed to provide references for better applications of AADCs in the biosynthesis of aromatic monoamines.



Key wordsAromatic L-amino acid decarboxylase      Aromatic monoamines      Protein structure      Directed remodelling     
Received: 04 March 2023      Published: 08 October 2023
ZTFLH:  Q814  
Cite this article:

LIU Qing-hao, LI Chen-xi, BAO Xin-ru, QI Feng. Advances in Aromatic L-amino Acid Decarboxylases. China Biotechnology, 2023, 43(9): 105-112.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2303011     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I9/105

Fig.1 Reactions catalyzed by different AADCs
Fig.2 Combination of CrTDC and PLP
Fig.3 Reaction mechanism of CrTDC catalyzed substrate decarboxylation
Fig.4 Phylogenetic analysis of ADCs The ADCs were designated by the UniProt code
Fig.5 Comparison of the amino acid sequences and protein structures of AADCs (a)Comparison of amino acid sequences of several TDC, DDC, and plant TyDC. The amino acids in their substrate binding pockets were marked with ▲, and the inconsistent amino acids in their substrate binding pockets were marked with □ (b)Protein structures of different AADCs (c)Substrate binding pockets of different AADCs
[1]   Han S W, Shin J S. Aromatic L-amino acid decarboxylases: mechanistic features and microbial applications. Applied Microbiology and Biotechnology, 2022, 106(12): 4445-4458.
doi: 10.1007/s00253-022-12028-4
[2]   Jordan F, Patel H. Catalysis in enzymatic decarboxylations: comparison of selected cofactor-dependent and cofactor-independent examples. ACS Catalysis, 2013, 3(7): 1601-1617.
pmid: 23914308
[3]   Li T F, Huo L, Pulley C, et al. Decarboxylation mechanisms in biological system. Bioorganic Chemistry, 2012, 43: 2-14.
doi: 10.1016/j.bioorg.2012.03.001 pmid: 22534166
[4]   Du Y L, Ryan K S. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Natural Product Reports, 2019, 36(3): 430-457.
doi: 10.1039/C8NP00049B
[5]   Ng J, Papandreou A, Heales S J, et al. Monoamine neurotransmitter disorders: clinical advances and future perspectives. Nature Reviews Neurology, 2015, 11(10): 567-584.
doi: 10.1038/nrneurol.2015.172
[6]   Roeder T, Seifert M, Kähler C, et al. Tyramine and octopamine: antagonistic modulators of behavior and metabolism. Archives of Insect Biochemistry and Physiology, 2003, 54(1): 1-13.
pmid: 12942511
[7]   Kang S, Kang K, Lee K, et al. Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice. Planta, 2007, 227(1): 263-272.
doi: 10.1007/s00425-007-0614-z pmid: 17763868
[8]   Berger M, Gray J A, Roth B L. The expanded biology of serotonin. Annual Review of Medicine, 2009, 60: 355-366.
doi: 10.1146/annurev.med.60.042307.110802 pmid: 19630576
[9]   Peuhkuri K, Sihvola N, Korpela R. Diet promotes sleep duration and quality. Nutrition Research, 2012, 32(5): 309-319.
doi: 10.1016/j.nutres.2012.03.009 pmid: 22652369
[10]   Back K, Tan D X, Reiter R J. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. Journal of Pineal Research, 2016, 61(4): 426-437.
doi: 10.1111/jpi.12364 pmid: 27600803
[11]   Mora-Villalobos J A, Zeng A P. Synthetic pathways and processes for effective production of 5-hydroxytryptophan and serotonin from glucose in Escherichia coli. Journal of Biological Engineering, 2018, 12(1): 3.
doi: 10.1186/s13036-018-0094-7
[12]   Park S, Kang K, Lee S W, et al. Production of serotonin by dual expression of tryptophan decarboxylase and tryptamine 5-hydroxylase in Escherichia coli. Applied Microbiology and Biotechnology, 2011, 89(5): 1387-1394.
doi: 10.1007/s00253-010-2994-4
[13]   Fujiwara T, Maisonneuve S, Isshiki M, et al. Sekiguchi lesion gene encodes a cytochrome P 450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. The Journal of Biological Chemistry, 2010, 285(15): 11308-11313.
doi: 10.1074/jbc.M109.091371
[14]   Hodgetts R B, O’Keefe S L. Dopa decarboxylase: a model gene-enzyme system for studying development, behavior, and systematics. Annual Review of Entomology, 2006, 51: 259-284.
pmid: 16332212
[15]   李凡, 舒斯云, 包新民. 多巴胺受体的结构和功能. 中国神经科学杂志, 2003(6): 405-410.
[15]   Li F, Shu S Y, Bao X M. Structure and function of dopamine receptors. Chinese Journal of Neuroscience, 2003(6): 405-410.
[16]   Crisp K M, Mesce K A. A cephalic projection neuron involved in locomotion is dye coupled to the dopaminergic neural network in the medicinal leech. Journal of Experimental Biology, 2004, 207(26): 4535-4542.
doi: 10.1242/jeb.01315
[17]   宋富强, 陈五九, 吴凤礼, 等. 异源表达多巴脱羧酶促进大肠杆菌从头合成多巴胺. 生物工程学报, 2021, 37(12): 4266-4276.
[17]   Song F Q, Chen W J, Wu F L, et al. Heterogeneous expression of DOPA decarboxylase to improve the production of dopamine in Escherichia coli. Chinese Journal of Biotechnology, 2021, 37(12): 4266-4276.
[18]   Shen P J, Gu S Y, Jin D, et al. Engineering metabolic pathways for cofactor self-sufficiency and serotonin production in Escherichia coli. ACS Synthetic Biology, 2022, 11(8): 2889-2900.
doi: 10.1021/acssynbio.2c00298
[19]   van Kessel S P, Frye A K, El-Gendy A O, et al. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nature Communications, 2019, 10(1): 1-11.
doi: 10.1038/s41467-018-07882-8
[20]   Facchini P J, Huber-Allanach K L, Tari L W. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry, 2000, 54(2): 121-138.
doi: 10.1016/s0031-9422(00)00050-9 pmid: 10872203
[21]   Wang H, Yu J, Satoh Y, et al. Crystal structures clarify cofactor binding of plant tyrosine decarboxylase. Biochemical and Biophysical Research Communications, 2020, 523(2): 500-505.
doi: S0006-291X(19)32407-6 pmid: 31898973
[22]   Facchini P J, De Luca V. Phloem-specific expression of tyrosine/dopa decarboxylase genes and the biosynthesis of isoquinoline alkaloids in opium poppy. The Plant Cell, 1995, 7(11): 1811-1821.
pmid: 12242361
[23]   吴洁, 固旭, 李东, 等. 降脂药苯扎贝特合成工艺改进. 中国新药杂志, 2010, 19(4): 311-312.
[23]   Wu J, Gu X, Li D, et al. Improved synthesis of hypolipidemic drug bezafibrate. Chinese Journal of New Drugs, 2010, 19(4): 311-312.
[24]   Nishimaki-Mogami T, Suzuki K, Okochi E, et al. Bezafibrate and clofibric acid are novel inhibitors of phosphatidylcholine synthesis via the methylation of phosphatidylethanolamine. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1996, 1304(1): 11-20.
doi: 10.1016/S0005-2760(96)00101-4
[25]   University of Barcelona. Combination of amines and vanadium(Ⅱ/Ⅳ) compounds for the treatment and prevention of diabetes mellitus: Europe, EP01983613.9. 2003-08-27[2023-08-16]. https://europepmc.org/article/PAT/EP1338280.
[26]   Jiang M Y, Xu G C, Ni J, et al. Improving soluble expression of tyrosine decarboxylase from Lactobacillus brevis for tyramine synthesis with high total turnover number. Applied Biochemistry and Biotechnology, 2019, 188(2): 436-449.
doi: 10.1007/s12010-018-2925-x
[27]   Torrens-Spence M P, Chiang Y C, Smith T, et al. Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(20): 10806-10817.
[28]   Nishino J, Hayashi H, Ishii S, et al. An anomalous side reaction of the Lys 303 mutant aromatic L- amino acid decarboxylase unravels the role of the residue in catalysis. The Journal of Biochemistry, 1997, 121(3): 604-611.
doi: 10.1093/oxfordjournals.jbchem.a021628
[29]   Toney M D. Controlling reaction specificity in pyridoxal phosphate enzymes. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2011, 1814(11): 1407-1418.
doi: 10.1016/j.bbapap.2011.05.019
[30]   Ishii S, Mizuguchi H, Nishino J, et al. Functionally important residues of aromatic L-amino acid decarboxylase probed by sequence alignment and site-directed mutagenesis. The Journal of Biochemistry, 1996, 120(2): 369-376.
doi: 10.1093/oxfordjournals.jbchem.a021422
[31]   Hayashi H, Mizuguchi H, Kagamiyama H. Rat liver aromatic L-amino acid decarboxylase: Spectroscopic and kinetic analysis of the coenzyme and reaction intermediates. Biochemistry, 1993, 32(3): 812-818.
pmid: 8422386
[32]   Burkhard P, Dominici P, Borri-Voltattorni C, et al. Structural insight into Parkinson’s disease treatment from drug-inhibited DOPA decarboxylase. Nature Structural Biology, 2001, 8(11): 963-967.
pmid: 11685243
[33]   Zhu H X, Xu G C, Zhang K, et al. Crystal structure of tyrosine decarboxylase and identification of key residues involved in conformational swing and substrate binding. Scientific Reports, 2016, 6(1): 1-10.
doi: 10.1038/s41598-016-0001-8
[34]   Torrens-Spence M P, Lazear M, von Guggenberg R, et al. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases. Phytochemistry, 2014, 106: 37-43.
doi: S0031-9422(14)00277-5 pmid: 25107664
[35]   Choi Y, Han S W, Kim J S, et al. Biochemical characterization and synthetic application of aromatic L-amino acid decarboxylase from Bacillus atrophaeus. Applied Microbiology and Biotechnology, 2021, 105(7): 2775-2785.
doi: 10.1007/s00253-021-11122-3
[36]   Zhang K, Ni Y. Tyrosine decarboxylase from Lactobacillus brevis: soluble expression and characterization. Protein Expression and Purification, 2014, 94: 33-39.
doi: 10.1016/j.pep.2013.10.018 pmid: 24211777
[37]   Luo H, Schneider K, Christensen U, et al. Microbial synthesis of human-hormone melatonin at gram scales. ACS Synthetic Biology, 2020, 9(6): 1240-1245.
doi: 10.1021/acssynbio.0c00065 pmid: 32501000
[38]   Grewal P S, Samson J A, Baker J J, et al. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production. Nature Chemical Biology, 2021, 17(1): 96-103.
doi: 10.1038/s41589-020-00668-4 pmid: 33046851
[39]   Lu H Y, Villada J C, Lee P K H. Modular metabolic engineering for biobased chemical production. Trends in Biotechnology, 2019, 37(2): 152-166.
doi: S0167-7799(18)30194-X pmid: 30064888
[40]   Ni C, Dinh C V, Prather K L J. Dynamic control of metabolism. Annual Review of Chemical and Biomolecular Engineering, 2021, 12: 519-541.
doi: 10.1146/chembioeng.2021.12.issue-1
[1] Kai-xi JI,Dan JIAO,Zhong-kui XIE,Guo YANG,Zi-yuan DUAN. Advances and Prospects of Brown Adipocyte-Specific Gene PRDM16[J]. China Biotechnology, 2019, 39(4): 84-93.
[2] MA Li, WU Hao, WANG Bin-bin, QIAO Jian-jun, ZHU Hong-ji. Progress in Functions and Regulatory Mechanisms of the Transcription Factor Rex[J]. China Biotechnology, 2016, 36(10): 94-100.
[3] GAO Fang-Luan, FAN Guo-Cheng, CHEN Jian-Guo, XIE Li-Yan, LIN Ai-Yang, TUN Jie-Jian, XIE Lian-Hui. Structure Analysis of P8 Protein of Rice Gall Dwarf Virus and it's Expression in E.coli[J]. China Biotechnology, 2009, 29(08): 51-56.