Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (6): 113-124    DOI: 10.13523/j.cb.2210042
    
Analysis of mRNA Drug Development and Market Application
HUANG Ke1,LI Shan-hong2,*()
1 Beijing Pharma & Biotech Center(BPBC), Beijing 100352, China
2 Zhifeng Technology (Beijing) Co., Ltd., Beijing 100089, China
Download: HTML   PDF(1546KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Messenger RNA (mRNA) is a kind of nucleic acid sequence which can express any protein of interest after its translation and modification in cells. Because of its inherent feature of protein of interest production, mRNA has potential to be used as drugs to treat various diseases, including viral infections, tumors, diseases caused by deficiency or abnormality of a certain protein in vivo, as well as genetic diseases by encoding Cas9 protein which is involved in gene editing. With the great success of mRNA vaccines, mRNA drugs have drawn increasing attention for their application potential. In addition, due to their advantages such as rapid research and development cycle, the ease and rapid large-scale production at low cost, and elimination of insertional mutagenesis and integration risk for the host, mRNA drugs have become the third generation of drugs after small molecule and antibody drugs. In this review, the structural properties and the delivery system of mRNA are introduced, the clinical progress of mRNA therapeutics and domestic mRNA vaccine development are summarized, and the remaining problems to be solved in the market application including research, manufacture and logistics of mRNA therapeutics are discussed, hoping to provide a reference for mRNA drug discovery and manufacturing.



Key wordsmRNA drugs      mRNA biologicals      Domestic mRNA vaccine      mRNA clinical progress     
Received: 26 October 2022      Published: 04 July 2023
ZTFLH:  Q522+.2  
Cite this article:

HUANG Ke, LI Shan-hong. Analysis of mRNA Drug Development and Market Application. China Biotechnology, 2023, 43(6): 113-124.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2210042     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I6/113

Fig.1 Milestone of mRNA drug research
Fig.2 Top 10 best sale drugs in 2020 & 2021
Fig.3 Structure scheme of mRNA[9]
Fig.4 Structure of LNP[1]
疫苗靶标 临床试验批号 临床进展 制造商
狂犬病毒 NCT02241135 I期 CureVac AG
巨细胞病毒 NCT03382405 I期 ModernaTX, Inc.
人偏肺病毒与副流感病毒3型 NCT03392389 I期 ModernaTX, Inc.
尼帕病毒 NCT05398796 招募中 National Institute of Allergy and Infectious Diseases
(NIAID)& ModernaTX, Inc.
人类免疫缺陷病毒 NCT05217641 招募中 National Institute of Allergy and Infectious Diseases (NIAID)
基孔肯亚病毒 NCT03829384 I期 ModernaTX, Inc.
EB病毒 NCT05164094 招募中 ModernaTX, Inc.
寨卡病毒 NCT03014089 I期 ModernaTX, Inc.
新型冠状病毒 NCT05435027 招募中 Gritstone bio, Inc.
呼吸道合胞病毒 NCT05127434 III期中 ModernaTX, Inc.
流感病毒 NCT05252338 招募中 GSK& CureVac AG
Table 1 Examples of clinical progress of mRNA vaccines against infectious diseases
疫苗名称 临床试验批号 临床进展 靶标 厂商
DC-mRNA NCT00846456 I/II Glioblastoma Oslo University Hospital
个体化mRNA疫苗 NCT03908671 未招募 sophageal cancer
Non small cell lung cancer
Stemirna Therapeutics
个体化新抗原mRNA疫苗 NCT05192460 招募中 Gastric cancer,
Esophageal cancer,
Liver cancer
NeoCura& The Affiliated Hospital of the Chinese
Academy of Military Medical Sciences
CV9201 NCT00923312 III期 Non small cell lung cancer CureVac AG
BI 1361849 NCT03164772 II期 Non small cell lung cancer Ludwig Institute for Cancer Research;
oehringer Ingelheim MedImmune LLC
CureVac AG
PharmaJet, Inc.
BNT111 NCT04526899 II完成 Melanoma BioNTech SE
TriMix-DC NCT01066390 I期完成 Melanoma Universitair Ziekenhuis Brussel
Melan-A, Mage-A1, Mage-A3
Survivin, gp100, NCT00204516 I/II完成 Melanoma University Hospital Tuebingen
CV9104 NCT02140138 II期终止 Prostate cancer CureVac AG
mRNA- 4157 NCT03313778 招募中 Solid tumor ModernaTX, Inc.
DC-006 (DC-mRNA) NCT01334047 I/II终止 Ovarian Cancer Oslo University Hospital
W_ova1 NCT04163094 招募中 Ovarian Cancer University Medical Center Groningen
Table 2 Clinical progress of mRNA vaccine against tumor
治疗方向 抗体形式 靶标或适应证 研究进程 研究团队
肿瘤 双特异性 实体瘤 研究阶段 BioNTech AG
未披露 实体瘤 临床前 BioNTech AG
IgG CD20 研究阶段 CurVac AG
未披露 表面肿瘤 临床前 CurVac AG
感染性疾病 IgG 人类免疫缺陷病毒 研究阶段 University of Pennsylvania
IgG 狂犬病毒 研究阶段 CurVac AG
IgG 乙型流感病毒 研究阶段 CurVac AG
IgG 甲型流感病毒 研究阶段 Moderna Therapeutics
多种形式抗体 呼吸道合胞病毒 研究阶段 Georgia Institution of Technology
and Emory University
未披露(mRNA-1944) 基孔肯亚病毒 临床I期 Moderna Therapeutics/DARPA
毒素 中和抗体 肉毒菌毒素 研究阶段 CurVac AG
中和抗体 志贺毒素 研究阶段 CurVac AG
Table 3 Research progress of antibody drugs based on mRNA[34]
靶标 临床试验批号 临床试验进展 技术路线 厂商
病毒性角膜炎 NCT04560790 I/II期 CRISPR/Cas9 Shanghai BDgene Co., Ltd.
遗传性血管水肿 NCT05120830 I/II期 CRISPR/Cas9 Intellia Therapeutics
ZFN修饰的T细胞治疗HIV感染 NCT02388594 I期 ZFN University of Pennsylvania
镰刀状红细胞 NCT03653247 I/II期 ZFN Sangamo Therapeutics
Table 4 Clinical experiments of gene edit based on mRNA
名称 研发企业 临床进程 靶标
ARCoV 艾博/沃森 III期 新冠原始毒株
奥密克戎mRNA疫苗 艾博 获得临床批件 新冠奥密克戎变异株
- 斯微生物 II期 新冠原始毒株
LVRNA009 丽凡达/艾美 III期 新冠原始毒株
SYS6006 石药 II期 新冠奥密克戎变异株和德尔塔突变株
- 康希诺 I/II期 新冠原始毒株
R520A 瑞科/瑞吉 I期 新冠原始毒株
- 锐博/阿格纳 I期 新冠原始毒株
- 威斯津 IND申请 新冠奥密克戎变异株和德尔塔突变株
RQ3011/3012/3013 蓝鹊/沃森/复旦 临床前 新冠原始毒株
新冠突变株mRNA疫苗 蓝鹊/沃森 临床前 新冠原始毒株
- 中生复诺健 临床前 新冠奥密克戎变异株和德尔塔突变株
Table 5 Progress of domestic mRNA vaccine research development
Fig.5 mRNA drug production process[42]
厂商 冷冻条件下储存稳定性 2-8℃储存稳定性 室温储存稳定性
Moderna -20℃,约6个月 30天 约24 h
Pfizer-BioNTech -80~ -60℃、约6个月,或-20℃、2周 约1个月 约2 h
Table 6 Storage conditions and stability of foreign mRNA vaccines
[1]   Dolgin E. The tangled history of mRNA vaccines. Nature, 2021, 597(7876): 318-324.
doi: 10.1038/d41586-021-02483-w
[2]   Karikó K, Muramatsu H, Welsh F A, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular Therapy, 2008, 16(11): 1833-1840.
doi: 10.1038/mt.2008.200 pmid: 18797453
[3]   Xu S Q, Yang K P, Li R, et al. mRNA vaccine era-mechanisms, drug platform and clinical prospection. International Journal of Molecular Sciences, 2020, 21(18): 6582.
doi: 10.3390/ijms21186582
[4]   Baden L R, El Sahly H M, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. The New England Journal of Medicine, 2021, 384(5): 403-416.
doi: 10.1056/NEJMoa2035389 pmid: 33378609
[5]   Polack F P, Thomas S J, Kitchin N, et al. Safety and efficacy of the BNT162b 2 mRNA COVID-19 vaccine. The New England Journal of Medicine, 2020, 383(27): 2603-2615.
doi: 10.1056/NEJMoa2034577
[6]   Corbett K S, Flynn B, Foulds K E, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman Primates. The New England Journal of Medicine, 2020, 383(16): 1544-1555.
doi: 10.1056/NEJMoa2024671
[7]   Vogel A B, Kanevsky I, Che Y, et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature, 2021, 592(7853): 283-289.
doi: 10.1038/s41586-021-03275-y
[8]   Zhao H, Wang T C, Li X F, et al. Long-term stability and protection efficacy of the RBD-targeting COVID-19 mRNA vaccine in nonhuman Primates. Signal Transduction and Targeted Therapy, 2021, 6: 438.
doi: 10.1038/s41392-021-00861-4 pmid: 34952914
[9]   Schoenmaker L, Witzigmann D, Kulkarni J A, et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. International Journal of Pharmaceutics, 2021, 601: 120586.
doi: 10.1016/j.ijpharm.2021.120586
[10]   Ramanathan A, Robb G B, Chan S H. mRNA capping: biological functions and applications. Nucleic Acids Research, 2016, 44(16): 7511-7526.
doi: 10.1093/nar/gkw551 pmid: 27317694
[11]   Fuchs A L, Neu A, Sprangers R. A general method for rapid and cost-efficient large-scale production of 5' capped RNA. RNA (New York, N Y), 2016, 22(9): 1454-1466.
[12]   Grudzien-Nogalska E, Jemielity J, Kowalska J, et al. Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. RNA, 2007, 13(10): 1745-1755.
pmid: 17720878
[13]   Beverly M, Dell A, Parmar P, et al. Label-free analysis of mRNA capping efficiency using RNase H probes and LC-MS. Analytical and Bioanalytical Chemistry, 2016, 408(18): 5021-5030.
doi: 10.1007/s00216-016-9605-x pmid: 27193635
[14]   Henderson J M, Ujita A, Hill E, et al. Correction: cap 1 messenger RNA synthesis with Co-transcriptional CleanCap® analog by in vitro transcription. Current Protocols, 2021, 1(12): e336.
[15]   Jia L F, Mao Y H, Ji Q Q, et al. Decoding mRNA translatability and stability from the 5' UTR. Nature Structural & Molecular Biology, 2020, 27(9): 814-821.
doi: 10.1038/s41594-020-0465-x
[16]   Xia X H. Detailed dissection and critical evaluation of the pfizer/BioNTech and moderna mRNA vaccines. Vaccines, 2021, 9(7): 734.
doi: 10.3390/vaccines9070734
[17]   Presnyak V, Alhusaini N, Chen Y H, et al. Codon optimality is a major determinant of mRNA stability. Cell, 2015, 160(6): 1111-1124.
doi: 10.1016/j.cell.2015.02.029 pmid: 25768907
[18]   Morais P, Adachi H, Yu Y T. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Frontiers in Cell and Developmental Biology, 2021, 9: 789427.
doi: 10.3389/fcell.2021.789427
[19]   Elango N, Elango S, Shivshankar P, et al. Optimized transfection of mRNA transcribed from a d(A/T) 100 tail-containing vector. Biochemical and Biophysical Research Communications, 2005, 330(3): 958-966.
doi: 10.1016/j.bbrc.2005.03.067
[20]   Adams D, Gonzalez-Duarte A, O’Riordan W D, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med, 2018, 379(1):11-21.
doi: 10.1056/NEJMoa1716153
[21]   Dobrowolski C, Paunovska K, Hatit M Z C, et al. Therapeutic RNA delivery for COVID and other diseases. Advanced Healthcare Materials, 2021, 10(15): 2002022.
doi: 10.1002/adhm.v10.15
[22]   Leung A K K, Tam Y Y C, Chen S, et al. Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. The Journal of Physical Chemistry B, 2015, 119(28): 8698-8706.
doi: 10.1021/acs.jpcb.5b02891
[23]   Ewe A, Höbel S, Heine C, et al. Optimized polyethylenimine (PEI)-based nanoparticles for siRNA delivery, analyzed in vitro and in an ex vivo tumor tissue slice culture model. Drug Delivery and Translational Research, 2017, 7(2): 206-216.
doi: 10.1007/s13346-016-0306-y
[24]   Ke X Y, Shelton L, Hu Y Z, et al. Surface-functionalized PEGylated nanoparticles deliver messenger RNA to pulmonary immune cells. ACS Applied Materials & Interfaces, 2020, 12(32): 35835-35844.
[25]   Vandenbroucke R E, De Geest B G, Bonné S, et al. Prolonged gene silencing in hepatoma cells and primary hepatocytes after small interfering RNA delivery with biodegradable poly(β-amino esters). The Journal of Gene Medicine, 2008, 10(7): 783-794.
doi: 10.1002/jgm.1202 pmid: 18470950
[26]   Jarzebska N T, Mellett M, Frei J, et al. Protamine-based strategies for RNA transfection. Pharmaceutics, 2021, 13(6): 877.
doi: 10.3390/pharmaceutics13060877
[27]   王彧, 白岳丘, 田易晓, 等. mRNA疫苗在疾病预防与治疗中的研究进展与展望. 中国生物工程杂志, 2022, 42(10): 51-59.
[27]   Wang Y, Bai Y Q, Tian Y X, et al. Advances and prospects of mRNA vaccines used in the prevention and therapies of diseases. China Biotechnology, 2022, 42(10): 51-59.
[28]   Martinez M, Moon E K. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Frontiers in Immunology, 2019, 10: 128.
doi: 10.3389/fimmu.2019.00128 pmid: 30804938
[29]   Yin X J, Li L H, Fan H X, et al. Correlation between surfactant protein B mRNA expression and neonatal respiratory distress syndrome. Experimental and Therapeutic Medicine, 2012, 4(5): 815-819.
pmid: 23226732
[30]   Zangi L, Lui K O, von Gise A, et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nature Biotechnology, 2013, 31(10): 898-907.
doi: 10.1038/nbt.2682 pmid: 24013197
[31]   Mays L E, Ammon-Treiber S, Mothes B, et al. Modified Foxp3 mRNA protects against asthma through an IL-10-dependent mechanism. The Journal of Clinical Investigation, 2013, 123(3): 1216-1228.
doi: 10.1172/JCI65351
[32]   Leutert M, Entwisle S W, Villén J. Decoding post-translational modification crosstalk with proteomics. Molecular & Cellular Proteomics, 2021, 20: 100129.
doi: 10.1016/j.mcpro.2021.100129
[33]   Seidah N G, Chrétien M. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides1. Brain Research, 1999, 848(1-2): 45-62.
pmid: 10701998
[34]   Schlake T, Thran M, Fiedler K, et al. mRNA: a novel avenue to antibody therapy? Molecular Therapy, 2019, 27(4): 773-784.
doi: S1525-0016(19)30088-7 pmid: 30885573
[35]   Zhang H X, Zhang Y, Yin H. Genome editing with mRNA encoding ZFN, TALEN, and Cas9. Molecular Therapy, 2019, 27(4): 735-746.
doi: 10.1016/j.ymthe.2019.01.014
[36]   Conway A, Mendel M, Kim K, et al. Non-viral delivery of zinc finger nuclease mRNA enables highly efficient in vivo genome editing of multiple therapeutic gene targets. Molecular Therapy, 2019, 27(4): 866-877.
doi: 10.1016/j.ymthe.2019.03.003
[37]   Qiu M, Glass Z, Chen J J, et al. Lipid nanoparticle-mediated codelivery of Cas 9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(10).DOI:10.1073/pnas.2020401118.
doi: 10.1073/pnas.2020401118
[38]   Miller J B, Zhang S Y, Kos P, et al. Non-viral CRISPR/cas gene editing in vitro and in vivo enabled by synthetic nanoparticle Co-delivery of Cas 9 mRNA and sgRNA. Angewandte Chemie International Edition, 2017, 56(4): 1059-1063.
[39]   Whitley J, Zwolinski C, Denis C, et al. Development of mRNA manufacturing for vaccines and therapeutics: mRNA platform requirements and development of a scalable production process to support early phase clinical trials. Translational Research, 2022, 242: 38-55.
doi: 10.1016/j.trsl.2021.11.009
[40]   Kis Z, Kontoravdi C, Shattock R, et al. Resources, production scales and time required for producing RNA vaccines for the global pandemic demand. Vaccines, 2020, 9(1): 3.
doi: 10.3390/vaccines9010003
[41]   Webb C, Ip S, Bathula N V, et al. Current status and future perspectives on MRNA drug manufacturing. Molecular Pharmaceutics, 2022, 19(4): 1047-1058.
doi: 10.1021/acs.molpharmaceut.2c00010
[42]   Rosa S S, Prazeres D M F, Azevedo A M, et al. mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine, 2021, 39(16): 2190-2200.
doi: 10.1016/j.vaccine.2021.03.038 pmid: 33771389
[43]   润顺琪, 熊壮壮, 魏应亮, 等. 新冠病毒mRNA疫苗递送系统的中国专利风险. 中国发明与专利, 2022, 19(8): 35-41.
[43]   Run S Q, Xiong Z Z, Wei Y L, et al. Risk analysis of patent of COVID-19 mRNA vaccine delivery system in China. China Invention & Patent, 2022, 19(8): 35-41.
[44]   Zhang N N, Li X F, Deng Y Q, et al. A thermostable mRNA vaccine against COVID-19. Cell, 2020, 182(5): 1271-1283.e16.
doi: 10.1016/j.cell.2020.07.024
[1] LIU Shao-jin,FENG Xue-jiao,WANG Jun-shu,XIAO Zheng-qiang,CHENG Ping-sheng. Market Analysis and Countermeasures of Nucleic Acid Drugs in China[J]. China Biotechnology, 2021, 41(7): 99-109.