Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (11): 126-139    DOI: 10.13523/j.cb.2209044
    
Research Progress on Reuse of Biomass Resource of Oyster Shells
ZHANG Qi1,ZHANG Yi-xia1,**(),XUE Cai-li1,ZHANG Hui1,ZHANG Yun-peng1,YANG Da-peng2,**()
1 School of Biomedical Engineering, Taiyuan University Of Technology, Taiyuan 030024, China
2 School of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou 362000, China
Download: HTML   PDF(1997KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Oysters are saltwater bivalves with high nutritional and medicinal value that are cultivated widely around the world. Oyster shell is a unique natural biomaterial composed of 95% calcium carbonate and 5% organic polymer material. Its unique multi-scale and multi-level “brick-mud”microstructure is similar to human hard tissues, which endows its good mechanical stability, biocompatibility, degradability, and excellent adsorption properties. Herein, this paper systematically introduces and discusses the physicochemical and highly ordered hierarchical natural unique calcium carbonate micro nano structure of oyster shell, followed by a summary of its applications in agriculture, industry and biology. Specially, we elaborate the applications of oyster shells in sewage processing, soil improvement, natural antibacterial agents (food industry and biomedicine), bone tissue engineering, medical uses, biological filling, catalysts and dispersive carriers in diesel industry, concrete fillers in construction industry, and functional coating additives,and introduce the advances in using the bioconversion technology to convert oyster shells into bioenergy, new biomass materials and other applications. In addition, this review also discusses the potential applications of oyster shells in industry, agriculture and medicine in the near future.



Key wordsBiological      resources      of      oyster      shells      Water      body      restoration      Soil      improvement      Biomass      antibacterial      Industrial      ecological      raw      materials     
Received: 16 September 2022      Published: 07 December 2022
ZTFLH:  Q819  
Cite this article:

ZHANG Qi, ZHANG Yi-xia, XUE Cai-li, ZHANG Hui, ZHANG Yun-peng, YANG Da-peng. Research Progress on Reuse of Biomass Resource of Oyster Shells. China Biotechnology, 2022, 42(11): 126-139.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2209044     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I11/126

产量/万吨 占比/% 排名
福建 201.259 38.5 第一
广东 113.916 21.8 第二
山东 86.987 16.6 第三
广西 65.928 12.6 第四
辽宁 27.390 5.2 第五
浙江 22.771 4.3
江苏 4.020 7.7
河北 0.15 0.03
总产量 522.421
Table 1 Oyster aquaculture production in provinces of China
Fig. 1 Application fields of oyster shell biomass resources
Fig.2 Schematic drawing of the microstructures (a) and“brick and mortar” macroarchitectture(b) of oyster shells
Fig.3 Permeable oyster shell brick preparation process
Fig.4 Mode of action of chitosan against Gram-negative (a)and Gram-positive bacteria(b)
Fig.5 SEM images of natural oyster shells Cross section(a) porous microstructure(b) low multiples(c)and high multiples magnified (d)image of oyster shell powder
[1]   Bianchi M, Chopin F, Farme T, et al. FAO: The state of world fisheries and aquaculture. Rome: Food and Agriculture Organization of the United Nations, 2014:1-230.
[2]   Cheng S Z, Tu M L, Liu H X, et al. A novel heptapeptide derived from Crassostrea gigas shows anticoagulant activity by targeting for thrombin active domain. Food Chemistry, 2021, 334: 127507.
doi: 10.1016/j.foodchem.2020.127507
[3]   Campbell M D, Hall S G. Hydrodynamic effects on oyster aquaculture systems: a review. Reviews in Aquaculture, 2019, 11(3): 896-906.
doi: 10.1111/raq.12271
[4]   Fishery FAO Aquaculture , 2012. [2022-09-01]. http://www.fao.org/fishery/statistics/en .
[5]   农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 中国渔业统计年鉴 2020. 北京: 中国农业出版社, 2020:27.
[5]   Fishery and Fishery Administration of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National Fisheries Technology Extension Center, China Society of Fisheries. China fishery statistical yearbook 2020. Beijing: Chinese Agriculture Press, 2020:27.
[6]   Águila-Almanza E, Hernández-Cocoletzi H, Rubio-Rosas E, et al. Recuperation and characterization of calcium carbonate from residual oyster and clamshells and their incorporation into a residential finish. Chemosphere, 2022, 288: 132550.
doi: 10.1016/j.chemosphere.2021.132550
[7]   Silva T H, Mesquita-Guimarães J, Henriques B, et al. The potential use of oyster shell waste in new value-added by-product. Resources, 2019, 8(1): 13.
doi: 10.3390/resources8010013
[8]   李凤敏. 贝壳材料的结构特征和力学性能分析. 大连: 大连理工大学, 2005.
[8]   Li F M. The analysis of structural characteristics and properties of the shell. Dalian: DalianUniversity of Technology, 2005.
[9]   Checa A G. Physical and biological determinants of the fabrication of molluscan shell microstructures. Frontiers in Marine Science, 2018, 5: 353.
doi: 10.3389/fmars.2018.00353
[10]   Peng D M, Zhang S C, Zhang H Z, et al. The oyster fishery in China: Trend, concerns and solutions. Marine Policy, 2021, 129: 104524.
doi: 10.1016/j.marpol.2021.104524
[11]   崔童. 贝壳的应用途径及相关材料的制备. 渔业研究, 2019, 41(4): 353-358.
[11]   Cui T. Application of shells and preparation of shell materials. Journal of Fisheries Research, 2019, 41(4): 353-358.
[12]   Yao Z T, Xia M S, Li H Y, et al. Bivalve shell: not an abundant useless waste but a functional and versatile biomaterial. Critical Reviews in Environmental Science and Technology, 2014, 44(22): 2502-2530.
doi: 10.1080/10643389.2013.829763
[13]   Liu X, Zhan G W, Wu J Y, et al. Preparation of integrated CuO/ZnO/OS nanocatalysts by using acid-etched oyster shells as a support for CO2 hydrogenation. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7162-7173.
[14]   Song F, Soh A K, Bai Y L. Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials, 2003, 24(20): 3623-3631.
pmid: 12809793
[15]   Chai W S, Cheun J Y, Kumar P S, et al. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 2021, 296: 126589.
doi: 10.1016/j.jclepro.2021.126589
[16]   Tamjidi S, Ameri A. A review of the application of sea material shells as low cost and effective bio-adsorbent for removal of heavy metals from wastewater. Environmental Science and Pollution Research International, 2020, 27(25): 31105-31119.
doi: 10.1007/s11356-020-09655-7 pmid: 32533472
[17]   Tao H C, Zhang H R, Li J B, et al. Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater. Bioresource Technology, 2015, 192: 611-617.
doi: 10.1016/j.biortech.2015.06.006
[18]   Qi X, Yin H, Zhu M H, et al. MgO-loaded nitrogen and phosphorus self-doped biochar: high-efficient adsorption of aquatic Cu2+, Cd2+, and Pb2+ and its remediation efficiency on heavy metal contaminated soil. Chemosphere, 2022, 294: 133733.
doi: 10.1016/j.chemosphere.2022.133733
[19]   Wu Q, Chen J, Clark M, et al. Adsorption of copper to different biogenic oyster shell structures. Applied Surface Science, 2014, 311: 264-272.
doi: 10.1016/j.apsusc.2014.05.054
[20]   Qi X L, Tong X Q, Pan W H, et al. Recent advances in polysaccharide-based adsorbents for wastewater treatment. Journal of Cleaner Production, 2021, 315: 128221.
doi: 10.1016/j.jclepro.2021.128221
[21]   Xiang Y J, Yang X, Xu Z Y, et al. Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: effects and mechanisms. Science of the Total Environment, 2020, 709: 136079.
doi: 10.1016/j.scitotenv.2019.136079
[22]   Zhao B L, Zhang J E, Yan W B, et al. Removal of cadmium from aqueous solution using waste shells of golden apple snail. Desalination and Water Treatment, 2016, 57(50): 23987-24003.
doi: 10.1080/19443994.2016.1140078
[23]   Tamjidi S, Esmaeili H. Chemically modified CaO/Fe3O4 nanocomposite by sodium dodecyl sulfate for Cr(III) removal from water. Chemical Engineering & Technology, 2019, 42(3): 607-616.
[24]   Yen H Y, Li J Y. Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using Taguchi method. Journal of Environmental Management, 2015, 161: 344-349.
doi: S0301-4797(15)30169-9 pmid: 26203873
[25]   Xia C H, Zhang X Y, Xia L H. Heavy metal ion adsorption by permeable oyster shell bricks. Construction and Building Materials, 2021, 275: 122128.
doi: 10.1016/j.conbuildmat.2020.122128
[26]   Esmaeili H, Tamjidi S, Abed M. Removal of Cu(II), Co(II) and Pb(II) from synthetic and real wastewater using calcified Solamen Vaillanti snail shell. Desalination and Water Treatment, 2020, 174: 324-335.
doi: 10.5004/dwt.2020.24880
[27]   Shankar P, Gomathi T, Vijayalakshmi K, et al. Comparative studies on the removal of heavy metals ions onto cross linked chitosan-g-acrylonitrile copolymer. International Journal of Biological Macromolecules, 2014, 67: 180-188.
doi: 10.1016/j.ijbiomac.2014.03.010 pmid: 24680901
[28]   Ahmadi M, Rahmani H, Ramavandi B, et al. Removal of nitrate from aqueous solution using activated carbon modified with Fenton reagents. Desalination and Water Treatment, 2017, 76: 265-275.
doi: 10.5004/dwt.2017.20705
[29]   Teimouri A, Esmaeili H, Foroutan R, et al. Adsorptive performance of calcined Cardita bicolor for attenuating Hg(II) and As(III) from synthetic and real wastewaters. Korean Journal of Chemical Engineering, 2018, 35(2): 479-488.
doi: 10.1007/s11814-017-0311-y
[30]   Khirul M A, Kim B G, Cho D, et al. Effect of oyster shell powder on nitrogen releases from contaminated marine sediment. Environmental Engineering Research, 2020, 25(2): 230-237.
doi: 10.4491/eer.2018.395
[31]   Zhan J X, Lu J S, Wang D. Review of shell waste reutilization to promote sustainable shellfish aquaculture. Reviews in Aquaculture, 2022, 14(1): 477-488.
doi: 10.1111/raq.12610
[32]   van H T, Nguyen L H, Nguyen V D, et al. Characteristics and mechanisms of cadmium adsorption onto biogenic aragonite shells-derived biosorbent: batch and column studies. Journal of Environmental Management, 2019, 241: 535-548.
doi: S0301-4797(18)31089-2 pmid: 30318157
[33]   He C X, Qu J H, Yu Z H, et al. Preparation of micro-nano material composed of oyster shell/Fe3O4 nanoparticles/humic acid and its application in selective removal of Hg(II). Nanomaterials (Basel, Switzerland), 2019, 9(7): 953.
[34]   李昂, 王旭, 范洪黎. 4种土壤调理剂改良红壤铝毒害的效果研究. 中国土壤与肥料, 2014(4): 7-11.
[34]   Li A, Wang X, Fan H L. Effects of four soil conditioners on alleviating aluminum toxicity in acid red soil. Soil and Fertilizer Sciences in China, 2014(4): 7-11.
[35]   王爱英, 赵啸林, 孙玲丽, 等. 沼渣土壤调理剂对胶东地区酸性土壤改良效果研究. 中国沼气, 2019(4): 98-102.
[35]   Wang A Y, Zhao X L, Sun L L, et al. Effect of soil conditioner of biogas slurry on acid soil improvement in Jiaodong area. China Biogas, 2019(4): 98-102.
[36]   Wan S Z, Liu Z F, Chen Y Q, et al. Effects of lime application and understory removal on soil microbial communities in subtropical Eucalyptus L’Hér. plantations. Forests, 2019, 10(4): 338.
[37]   Lu M Y, Shi X S, Feng Q, et al. Modification of oyster shell powder by humic acid for ammonium removal from aqueous solutions and nutrient retention in soil. Journal of Environmental Chemical Engineering, 2021, 9(6): 106708.
doi: 10.1016/j.jece.2021.106708
[38]   Ayilara M, Olanrewaju O, Babalola O, et al. Waste management through composting: challenges and potentials. Sustainability, 2020, 12(11): 4456.
doi: 10.3390/su12114456
[39]   Lee Y H, Islam S M A, Hong S J, et al. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell. Bioscience, Biotechnology, and Biochemistry, 2010, 74(8): 1517-1521.
doi: 10.1271/bbb.90642
[40]   Awad Y M, Lee S S, Kim K H, et al. Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: effects of biochar, oyster shells, and polymers. Chemosphere, 2018, 198: 40-48.
doi: S0045-6535(18)30042-0 pmid: 29421756
[41]   Wang Y T, Cai Z Q, Sheng S, et al. Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands. Science of the Total Environment, 2020, 701: 134736.
doi: 10.1016/j.scitotenv.2019.134736
[42]   Alabaraoye E, Achilonu M, Hester R. Biopolymer (chitin) from various marine seashell wastes: isolation and characterization. Journal of Polymers and the Environment, 2018, 26(6): 2207-2218.
doi: 10.1007/s10924-017-1118-y
[43]   Confederat L G, Tuchilus C G, Dragan M, et al. Preparation and antimicrobial activity of chitosan and its derivatives: a concise review. Molecules (Basel, Switzerland), 2021, 26(12): 3694.
doi: 10.3390/molecules26123694
[44]   Perinelli D R, Fagioli L, Campana R, et al. Chitosan-based nanosystems and their exploited antimicrobial activity. European Journal of Pharmaceutical Sciences, 2018, 117: 8-20.
doi: S0928-0987(18)30061-7 pmid: 29408419
[45]   Amankwaah C, Li J R, Lee J, et al. Antimicrobial activity of chitosan-based films enriched with green tea extracts on murine Norovirus, Escherichia coli, and Listeria innocua. International Journal of Food Science, 2020, 2020: 3941924.
[46]   Wang Y G, Li B, Zhang X D, et al. Low molecular weight chitosan is an effective antifungal agent against Botryosphaeria sp. and preservative agent for pear (Pyrus) fruits. International Journal of Biological Macromolecules, 2017, 95: 1135-1143.
doi: 10.1016/j.ijbiomac.2016.10.105
[47]   Karri V V S R, Kuppusamy G, Talluri S V, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. International Journal of Biological Macromolecules, 2016, 93: 1519-1529.
doi: S0141-8130(16)30449-4 pmid: 27180291
[48]   Morais D S, Guedes R M, Lopes M A. Antimicrobial approaches for textiles: from research to market. Materials (Basel, Switzerland), 2016, 9(6): E498.
[49]   Tsou C H, Wu C S, Hung W S, et al. Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder. Polymer, 2019, 160: 265-271.
doi: 10.1016/j.polymer.2018.11.048
[50]   Sadeghi K, Park K, Seo J. Oyster shell disposal: potential as a novel ecofriendly antimicrobial agent for packaging: a mini review. Korean Journal of Packaging Science and Technology, 2019, 25(2): 57-62.
doi: 10.20909/kopast.2019.25.2.57
[51]   Sato Y, Ishihara M, Nakamura S, et al. Preparation and application of bioshell calcium oxide (BiSCaO) nanoparticle-dispersions with bactericidal activity. Molecules (Basel, Switzerland), 2019, 24(18): 3415.
doi: 10.3390/molecules24183415
[52]   Hou Y K, Shavandi A, Carne A, et al. Marine shells: potential opportunities for extraction of functional and health-promoting materials. Critical Reviews in Environmental Science and Technology, 2016, 46(11-12): 1047-1116.
doi: 10.1080/10643389.2016.1202669
[53]   Chen Y C, Lin C L, Li C T, et al. Structural transformation of oyster, hard clam, and sea urchin shells after calcination and their antibacterial activity against foodborne microorganisms. Fisheries Science, 2015, 81(4): 787-794.
doi: 10.1007/s12562-015-0892-5
[54]   Hu Z Y, Gänzle M G. Challenges and opportunities related to the use of chitosan as a food preservative. Journal of Applied Microbiology, 2019, 126(5): 1318-1331.
doi: 10.1111/jam.14131 pmid: 30325559
[55]   Choi Y M, Whang J H, Kim J M, et al. The effect of oyster shell powder on the extension of the shelf-life of Kimchi. Food Control, 2006, 17(9): 695-699.
doi: 10.1016/j.foodcont.2005.04.005
[56]   Kim Y S, Choi Y M, Noh D O, et al. The effect of oyster shell powder on the extension of the shelf life of tofu. Food Chemistry, 2007, 103(1): 155-160.
doi: 10.1016/j.foodchem.2006.07.040
[57]   Choi J S, Lee H J, Jin S K, et al. Effect of oyster shell calcium powder on the quality of restructured pork ham. Korean Journal for Food Science of Animal Resources, 2014, 34(3): 372-377.
doi: 10.5851/kosfa.2014.34.3.372
[58]   Tongwanichniyom S, Kitjaruwankul S, Phornphisutthimas S. Production of biomaterials from seafood waste for application as vegetable wash disinfectant. Heliyon, 2022, 8(5): e09357.
doi: 10.1016/j.heliyon.2022.e09357
[59]   Shang B Y, Wang S S, Lu L X, et al. Poultry eggshell-derived antimicrobial materials: current status and future perspectives. Journal of Environmental Management, 2022, 314: 115096.
doi: 10.1016/j.jenvman.2022.115096
[60]   Chang L, Feng Y, Wang B Q, et al. Dual functional oyster shell-derived Ag/ZnO/CaCO3 nanocomposites with enhanced catalytic and antibacterial activities for water purification. RSC Advances, 2019, 9(70): 41336-41344.
doi: 10.1039/c9ra08960h
[61]   Widakdo J, Chen T M, Lin M C, et al. Evaluation of the antibacterial activity of eco-friendly hybrid composites on the base of oyster shell powder modified by metal ions and LLDPE. Polymers, 2022, 14(15): 3001.
doi: 10.3390/polym14153001
[62]   Fujita T. Osteoporosis: past, present and future. Osteoporosis International, 1997, 7 (Suppl 3): 6-9.
doi: 10.1007/BF03194335
[63]   Fujita T, Fujii Y, Goto B, et al. Peripheral computed tomography (pQCT) detected short-term effect of AAACa (heated oyster shell with heated algal ingredient HAI): a double-blind comparison with CaCO3 and placebo. Journal of Bone and Mineral Metabolism, 2000, 18(4): 212-215.
pmid: 10874600
[64]   Fujita T, Ohue M, Fujii Y, et al. The effect of active absorbable algal calcium (AAA Ca) with collagen and other matrix components on back and joint pain and skin impedance. Journal of Bone and Mineral Metabolism, 2002, 20(5): 298-302.
pmid: 12203036
[65]   Fujita T, Ohgitani S, Nomura M. Fall of blood ionized calcium on watching a provocative TV program and its prevention by active absorbable algal calcium (AAA Ca). Journal of Bone and Mineral Metabolism, 1999, 17(2): 131-136.
pmid: 10340641
[66]   Ciria-Recasens M, Blanch-Rubió J, Coll-Batet M, et al. Comparison of the effects of ossein-hydroxyapatite complex and calcium carbonate on bone metabolism in women with senile osteoporosis: a randomized, open-label, parallel-group, controlled, prospective study. Clinical Drug Investigation, 2011, 31(12): 817-824.
doi: 10.2165/11592930-000000000-00000 pmid: 22035462
[67]   Pelayo I, Haya J, De la Cruz J J, et al. Raloxifene plus ossein-hydroxyapatite compound versus raloxifene plus calcium carbonate to control bone loss in postmenopausal women: a randomized trial. Menopause (New York), 2008, 15(6): 1132-1138.
[68]   Farzadi A, Bakhshi F, Solati-Hashjin M, et al. Magnesium incorporated hydroxyapatite: synthesis and structural properties characterization. Ceramics International, 2014, 40(4): 6021-6029.
doi: 10.1016/j.ceramint.2013.11.051
[69]   Skwarek E, Janusz W, Sternik D. Adsorption of citrate ions on hydroxyapatite synthetized by various methods. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(3): 2027-2036.
pmid: 26224967
[70]   Thian E S, Konishi T, Kawanobe Y, et al. Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. Journal of Materials Science Materials in Medicine, 2013, 24(2): 437-445.
doi: 10.1007/s10856-012-4817-x
[71]   Qiu Z Y, Noh I S, Zhang S M. Silicate-doped hydroxyapatite and its promotive effect on bone mineralization. Frontiers of Materials Science, 2013, 7(1): 40-50.
doi: 10.1007/s11706-013-0193-9
[72]   Hasegawa Y, Fuji T, Inoue T. Nacre extract prevents scopolamine-induced memory deficits in rodents. Asian Pacific Journal of Tropical Medicine, 2018, 11(3): 202.
doi: 10.4103/1995-7645.228434
[73]   Tran N K S, Kwon J E, Kang S C, et al. Crassaostrea gigas oyster shell extract inhibits lipogenesis via suppression of serine palmitoyltransferase. Natural Product Communications, 2015, 10(2): 349-352.
pmid: 25920281
[74]   Latire T, Legendre F, Bouyoucef M, et al. Shell extracts of the edible mussel and oyster induce an enhancement of the catabolic pathway of human skin fibroblasts, in vitro. Cytotechnology, 2017, 69(5): 815-829.
doi: 10.1007/s10616-017-0096-1 pmid: 28474214
[75]   Chen Y, Jiang Y, Liao L Y, et al. Inhibition of 4NQO-induced oral carcinogenesis by dietary oyster shell calcium. Integrative Cancer Therapies, 2016, 15(1): 96-101.
doi: 10.1177/1534735415596572 pmid: 26293805
[76]   Lyu W D, Jia H J, Deng C Z, et al. Zeolite-containing mixture supplementation ameliorated dextran sodium sulfate-induced colitis in mice by suppressing the inflammatory bowel disease pathway and improving apoptosis in colon mucosa. Nutrients, 2017, 9(5): 467.
doi: 10.3390/nu9050467
[77]   王红霞, 魏景景, 康洪昌, 等. 柴胡加龙骨牡蛎汤治疗消化心身疾病体会. 环球中医药, 2018, 11(1): 73-75.
[77]   Wang H X, Wei J J, Kang H C, et al. Experience in treating digestive psychosomatic diseases with Chaihu and Kegu Oyster decoction. Global Traditional Chinese Medicine, 2018, 11(1): 73-75.
[78]   Yang Y, Yao Q Q, Pu X M, et al. Biphasic calcium phosphate macroporous scaffolds derived from oyster shells for bone tissue engineering. Chemical Engineering Journal, 2011, 173(3): 837-845.
doi: 10.1016/j.cej.2011.07.029
[79]   Luo W F, Zhang S Y, Lan Y W, et al. 3D printed porous polycaprolactone/oyster shell powder (PCL/OSP) scaffolds for bone tissue engineering. Materials Research Express, 2018, 5(4): 045403.
doi: 10.1088/2053-1591/aab916
[80]   Feng X, Jiang S S, Zhang F, et al. Shell water-soluble matrix protein from oyster shells promoted proliferation, differentiation and mineralization of osteoblasts in vitro and vivo. International Journal of Biological Macromolecules, 2022, 201: 288-297.
doi: 10.1016/j.ijbiomac.2021.12.168 pmid: 34998879
[81]   Yao Z T, Heng J Y Y, Lanceros-Méndez S, et al. Surface free energy and mechanical performance of LDPE/CBF composites containing toxic-metal free filler. International Journal of Adhesion and Adhesives, 2017, 77: 58-62.
doi: 10.1016/j.ijadhadh.2017.04.005
[82]   Fombuena V, Bernardi L, Fenollar O, et al. Characterization of green composites from biobased epoxy matrices and bio-fillers derived from seashell wastes. Materials & Design, 2014, 57: 168-174.
doi: 10.1016/j.matdes.2013.12.032
[83]   Yao Z T, Chen T, Li H Y, et al. Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste. Journal of Hazardous Materials, 2013, 262: 212-217.
doi: 10.1016/j.jhazmat.2013.08.062 pmid: 24036146
[84]   Bonnard M, Boury B, Parrot I. Key insights, tools, and future prospects on oyster shell end-of-life: a critical analysis of sustainable solutions. Environmental Science & Technology, 2020, 54(1): 26-38.
doi: 10.1021/acs.est.9b03736
[85]   Jin H, Kolar P, Peretti S, et al. Effect of preparation conditions on structure and activity of sodium-impregnated oyster shell catalysts for transesterification. Catalysts, 2018, 8(7): 259.
doi: 10.3390/catal8070259
[86]   Wang W D, Wang F S, Chang Y C, et al. Biomass chitosan-derived nitrogen-doped carbon modified with iron oxide for the catalytic ammoxidation of aromatic aldehydes to aromatic nitriles. Molecular Catalysis, 2021, 499: 111293.
doi: 10.1016/j.mcat.2020.111293
[87]   盖广清, 王卓清. 水性贝壳粉涂料甲醛净化率的研究. 吉林建筑大学学报, 2020(1): 77-80, 86.
[87]   Gai G Q, Wang Z Q. Study on formaldehyde purification rate of waterborne shell powder coatings. Journal of Jilin Jianzhu University, 2020(1): 77-80, 86.
[88]   Gai G Q, Bai L M. Study on the moisture absorption and release properties of waterborne diatom liquid interior wall coatings. J Jilin Jianzhu Univ, 2019, 36(1):58- 62.
[89]   Her S, Park T, Zalnezhad E, et al. Synthesis and characterization of cement clinker using recycled pulverized oyster and scallop shell as limestone substitutes. Journal of Cleaner Production, 2021, 278: 123987-124000.
doi: 10.1016/j.jclepro.2020.123987
[90]   Naqi A L, Siddique S, Kim H K, et al. Examining the potential of calcined oyster shell waste as additive in high volume slag cement. Construction and Building Materials, 2020, 230: 116973-116981.
doi: 10.1016/j.conbuildmat.2019.116973
[91]   Shi Z G, Zhang L, Yuan H R, et al. Oyster shells improve anaerobic dark fermentation performances of food waste: hydrogen production, acidification performances, and microbial community characteristics. Bioresource Technology, 2021, 335: 125268-125277.
doi: 10.1016/j.biortech.2021.125268
[92]   Hirano Y, Ihara T, Gomi K, et al. Simulation-based evaluation of the effect of green roofs in office building districts on mitigating the urban heat island effect and reducing CO2 emissions. Sustainability, 2019, 11(7): 2055-2071.
doi: 10.3390/su11072055
[93]   Susca T. Green roofs to reduce building energy use? A review on key structural factors of green roofs and their effects on urban climate. Building and Environment, 2019, 162: 106273.
doi: 10.1016/j.buildenv.2019.106273
[94]   Yu L Q, Gan J P. Mitigation of eutrophication and hypoxia through oyster aquaculture: an ecosystem model evaluation off the Pearl River Estuary. Environmental Science & Technology, 2021, 55(8): 5506-5514.
doi: 10.1021/acs.est.0c06616
[95]   Ulagesan S, Krishnan S, Nam T J, et al. A review of bioactive compounds in oyster shell and tissues. Frontiers in Bioengineering and Biotechnology, 2022, 10: 913839.
doi: 10.3389/fbioe.2022.913839
[96]   Bersoza Hernández A, Brumbaugh R D, Frederick P, et al. Restoring the eastern oyster: how much progress has been made in 53 years? Frontiers in Ecology and the Environment, 2018, 16(8): 463-471.
doi: 10.1002/fee.1935
[97]   Yang Y, Li P W, Jiao J, et al. Renewable sourced biodegradable mulches and their environment impact. Scientia Horticulturae, 2020, 268: 109375.
doi: 10.1016/j.scienta.2020.109375
[1] LIANG Shu-rui,LI Jiao-jiao,QI Hao. Construction of Riboregulator in the Application of Point-of-care Testing[J]. China Biotechnology, 2022, 42(9): 67-82.
[2] FENG Shuang,WANG Chun-wei,SU Xiao-hu. Research Advancement of CRISPR/Cas9 Directed Homologous Recombination Efficiency Improvements in Mammal Genome Editing[J]. China Biotechnology, 2022, 42(9): 83-92.
[3] WANG Man-man,WU Sheng-bo,WU Hao,ZHANG Peng,ZHANG Yu-miao,QIAO Jian-jun,CAIYIN Qing-ge-le. Research Progress on Polyphenol-based Quorum Sensing Interfering[J]. China Biotechnology, 2022, 42(9): 93-104.
[4] GUO Yan-tong,LIU Zhong-ming,ZHANG Hai-yan,ZHANG Bao. Molecular Diagnostic POCT Technology and Its Application in Emerging Infectious Diseases[J]. China Biotechnology, 2022, 42(9): 50-57.
[5] CHAI Yu-jie,FENG Jia,ZHOU Jian-ting,JIANG Jian-lan. Progress on Biological Treatment Technologies of Microcystins[J]. China Biotechnology, 2022, 42(8): 109-127.
[6] Kun WANG,Fu-yun ZHAO,Yun-fei XU,Xiao-feng YUAN,Wei-chun ZHAO. Preparation of Monoclonal Antibody Against Fusarium solani and Development of Its Colloidal Gold Immunochromatographic Strip[J]. China Biotechnology, 2022, 42(7): 54-61.
[7] Nan JIA,Guo-wei ZANG,Chun LI,Ying WANG. Metabolic Regulations and Applications of Cofactors in Microbial Cell Factories[J]. China Biotechnology, 2022, 42(7): 79-89.
[8] GAO Qian,WANG Bo,JIANG Hong. Analysis on the Status and Effect of Microbiome Funded by National Natural Science Foundation of China[J]. China Biotechnology, 2022, 42(6): 130-135.
[9] ZHANG Xin-di,FAN Chang-wei,SONG Xiao-qing,XU Cui-yun,HUANG Feng-jie. Root Cause and Prevention of Monoclonal Antibody Disulfide Bonds Reduction During Biopharmaceutical Manufacturing Process[J]. China Biotechnology, 2022, 42(6): 66-75.
[10] LIANG Shi-yu,WAN Li,GUO Xiao-jia,WANG Xue-ying,LV Li-ting,HU Ying-han,ZHAO Zong-bao. Engineered Rhodosporidium toruloides Strains Capable of Biosynthesizing a Non-natural Cofactor[J]. China Biotechnology, 2022, 42(5): 58-68.
[11] ZENG Hong-ye,NING Wen-jing,LUO Wen-xin. Advances in the Study of Antibody Composition and Targets of ADC Drugs[J]. China Biotechnology, 2022, 42(5): 69-80.
[12] ZHAO Tian-yu,HUA Yu-tao,HE Rui,LU Yan-kun,TAN Hua-lu,SONG Run-ze,SHEN Jian-zhong. Status Analysis and Suggestions of Collecting Human Genetic Resources in China[J]. China Biotechnology, 2022, 42(5): 139-145.
[13] NING Li-min,ZHU Ben-wei,YAO Zhong,SUN Yun. Recent Research Progresses of Membrane Separation Technology Used for Oligosaccharides Preparation and Separation[J]. China Biotechnology, 2022, 42(4): 102-110.
[14] LI Kai-tong, LIU Jin-qing, CAI Wang-wei, XIAO Man, SHEN Bei-fen, WANG Jing, FENG Jian-nan. Advances of Therapeutic Monoclonal Antibodies Targeting Human Interleukin-6 Protein[J]. China Biotechnology, 2022, 42(4): 58-67.
[15] HOU Si-jia,ZHANG Qian-qian,SUN Zhen-mei,CHEN Jing,MENG Jian-qiao,LIANG Dan,WU Rong-ling,GUO Yun-qian. Research Progress of WIND Transcription Factor Responsing to Wound Stress and Organ Growth in Plants[J]. China Biotechnology, 2022, 42(4): 85-92.