Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (11): 73-87    DOI: 10.13523/j.cb.2209033
    
Changes of Metabolites and Antioxidant Activity of Dendrobium huoshanense Jiaosu by Spontaneous Fermentation and Saccharomyces cerevisiae Fermentation
WU Jing1,WANG Zhen-zhen1,WANG Xiao-yu1,LUO Dan1,JIANG Zeng-liang2,SHA Ru-yi1,**(),MAO Jian-wei1,**,CUI Yan-li3
1 Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources and Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
2 Westlake University, Hangzhou 310024, China
3 Zhejiang University, Hangzhou 312027, China
Download: HTML   PDF(2040KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to realize the full quality utilization and high-value utilization of Dendrobium huoshanense, the Dendrobium huoshanense Jiaosu was prepared by two processes, i.e. Saccharomyces cerevisiae inoculation fermentation and natural fermentation. The change trend of metabolites (organic acids, total phenols, total sugars, etc.) and antioxidant activity (OH· scavenging rate, ABTS· scavenging rate, reducing power) in different fermentation processes were studied. Combined with multivariate statistical analysis, a comprehensive evaluation index was established. The results showed that the number of yeast in the Saccharomyces cerevisiae inoculation fermentation group was higher than that in the natural fermentation group. The content of 4 organic acids detected in natural fermentation group was higher than that in Saccharomyces cerevisiae fermentation group, and the content of lactic acid and acetic acid showed an upward trend. The oxalic acid content of Saccharomyces cerevisiae fermentation group decreased significantly, while the oxalic acid content of natural fermentation did not change significantly. The total phenol content of Saccharomyces cerevisiae fermentation group and natural fermentation group decreased by 24.02% and 24.98%, respectively. The total sugar content decreased by 64.21% and 22.89%, respectively. The pH value decreased by 0.12 and 0.24, respectively, and the total acid content increased by 62.98% and 70.98%, respectively. The sugar-acid ratio decreased by 80.13% and 59.47%, respectively. The taste of the ferment produced by Saccharomyces cerevisiae was mainly sour and sweet, while the taste of the ferment naturally fermented was mainly sweet. In terms of antioxidation, yeast fermentation was significantly higher than natural fermentation group, and OH· scavenging capacity was increased by 42.57% and 40.67%, respectively, while ABTS · scavenging capacity increased by 55.36% and 30.06%, respectively. The reducing power had no significant change. The results of correlation analysis and principal component analysis showed that organic acids such as lactic acid and acetic acid had a certain antioxidant activity. The comprehensive evaluation index of the 14th day of yeast fermentation reached the peak of the stage, and the growth quantity of yeast tended to be stable after the 14th day, entering the stable growth period, which can be used as the best fermentation node. To sum up, the results showed that compared with natural fermentation of Dendrobium huoshanense, Saccharomyces cerevisiae fermentation improved the antioxidant activity, enriched the taste of the Jiaosu, and shortened the fermentation time, and the quality of the Jiaosu was better.



Key wordsDendrobium huoshanense      Saccharomyces cerevisiae      Natural fermentation      Antioxidant     
Received: 14 September 2022      Published: 07 December 2022
ZTFLH:  TS201.3  
Cite this article:

WU Jing, WANG Zhen-zhen, WANG Xiao-yu, LUO Dan, JIANG Zeng-liang, SHA Ru-yi, MAO Jian-wei, CUI Yan-li. Changes of Metabolites and Antioxidant Activity of Dendrobium huoshanense Jiaosu by Spontaneous Fermentation and Saccharomyces cerevisiae Fermentation. China Biotechnology, 2022, 42(11): 73-87.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2209033     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I11/73

Fig.1 Changes of yeast number during fermentation
有机酸 保留时间/min 标准曲线回归方程 相关系数R2 线性范围
草酸 3.283 y=75 138.405x-895 876.9 0.999 1 10~100 μg/mL
莽草酸 5.270 y=321 192.6x-386 784.4 0.999 0 2~10 μg/mL
乳酸 5.891 y=4 600.3x+7 036.3 0.999 7 0.2~1.0 mg/mL
乙酸 6.397 y=3 798.002x-461 634.5 0.997 3 0.2~1.0 mg/mL
Table 1 Standard curve regression equations of organic acids
Fig.2 Changes of lactic acid content during fermentation
Fig.3 Changes of acetic acid content during fermentation
Fig.4 Changes of oxalic acid content during fermentation
Fig.5 Changes of shikimic acid content during fermentation
Fig.6 Changes of total phenolic content during fermentation
Fig.7 Changes of total sugar content during fermentation
Fig.8 Changes of pH during fermentation
Fig.9 Changes of total acid content during fermentation
Fig.10 Changes of sugar to acid ratio during fermentation
Fig.11 Changes of scavenging ability of hydroxyl radical during fermentation
Fig.12 Changes of ABTS free radical scavenging ability during fermentation
Fig.13 Changes of reducing power during fermentation
还原力 ABTS· OH· 总糖 总酚 乳酸 乙酸 草酸 莽草酸 总酸
还原力 1
ABTS· 0.50 1
OH· 0.46 0.74** 1
总糖 -0.38 -0.54 -0.84** 1
总酚 -0.55 -0.65* -0.91** 0.70* 1
乳酸 0.33 0.52 0.93** -0.86** -0.79** 1
乙酸 0.37 0.55 0.94** -0.86** -0.81** 0.98** 1
草酸 -0.43 -0.58* -0.96** 0.86** 0.85** -0.96** -0.97** 1
莽草酸 0.068 0.15 0.084 0.075 -0.039 0.22 0.094 0.0069 1
总酸 0.50 0.61* 0.95** -0.92** -0.83** 0.94** 0.95** -0.95** 0.053 1
Table 2 Correlation analysis between physicochemical indexes and antioxidant activity during Saccharomyces cerevisiae fermentation
还原力 ABTS· OH· 总糖 总酚 乳酸 乙酸 草酸 莽草酸 总酸
还原力 1
ABTS· 0.34 1
OH· 0.37 0.64* 1
总糖 0.28 -0.07 -0.45 1
总酚 -0.37 -0.54 -0.89** 0.26 1
乳酸 0.34 0.49 0.97** -0.54 -0.86** 1
乙酸 0.40 0.58* 0.98** -0.51 -0.87** 0.98** 1
草酸 0.42 0.64* 0.063 0.58* -0.19 -0.097 -0.012 1
莽草酸 0.24 0.40 0.48 -0.087 -0.34 0.55 0.46 0.15 1
总酸 0.37 0.45 0.94** -0.49 -0.84** 0.92** 0.93** -0.022 0.31 1
Table 3 Correlation analysis between physicochemical indexes and antioxidant activity during natural fermentation
成分 特征值 贡献率/% 累积贡献率/%
1 8.507 70.889 70.889
2 1.322 11.014 81.903
3 1.033 8.607 90.509
4 0.530 4.413 94.923
5 0.322 2.684 97.606
6 0.155 1.294 98.900
7 0.094 0.786 99.686
8 0.027 0.225 99.911
9 0.006 0.052 99.963
10 0.003 0.028 99.991
11 0.001 0.009 100
Table 4 Eigenvalue, contribution rate and cumulative contribution rate of principal components in Saccharomyces cerevisiae fermentation
成分 特征值 贡献率/% 累积贡献率/%
1 7.283 60.688 60.688
2 2.460 20.499 81.187
3 0.817 6.809 87.996
4 0.760 6.330 94.326
5 0.389 3.240 97.567
6 0.150 1.250 98.817
7 0.110 0.915 99.732
8 0.024 0.203 99.935
9 0.006 0.053 99.988
10 0.001 0.009 99.998
11 0 0.002 100
Table 5 Eigenvalue, contribution rate and cumulative contribution rate of principal components in natural fermentation
Fig.14 Changes of CEI index during fermentation
[1]   Moskovitz J, Yim M B, Chock P B. Free radicals and disease. Archives of Biochemistry and Biophysics, 2002, 397(2): 354-359.
pmid: 11795894
[2]   Almalki W H, Alroqib H M, Alotaibi M K, et al. Human diseases caused by oxidative stress: targeting free radicals. Natural Volatiles & Essential Oils Journal, 2021, 8(6): 4375-4383.
[3]   Engwa G A, Nweke F N, Nkeh-Chungag B N. Free radicals, oxidative stress-related diseases and antioxidant supplementation. Alternative Therapies in Health & Medicine, 2022, 28(1): 114-128.
[4]   Masi A, Sansone A, Ferreri C, et al. Free radicals induced DNA damage: chemical, analytical, biological, and diagnostic aspects. SMART eLAB, 2021, 16: 33-34.
[5]   Maddu N. Diseases related to types of free radicals. Antioxidants. Rijeka: IntechOpen, 2019.
[6]   Atasoy N, Mercan Yücel U. Antioxidants from plant sources and free radicals. Reactive Oxygen Species. . London: IntechOpen, 2022.
[7]   中华人民共和国工业与信息化部. QB/T5323—2018.植物酵素. 北京: 中国轻工业出版社, 2018.
[7]   Ministry of Industry and Information Technology of the people’s Republic of China. QB/T5323—2018.Plant Jiaosu. Beijing: China Light Industry Press, 2018.
[8]   毛建卫, 吴元锋, 方晟. 微生物酵素研究进展. 发酵科技通讯, 2010, 39(3): 42-44.
[8]   Mao J W, Wu Y F, Fang S. Advances in microbial enzyme research. Bulletin of Fermentation Science and Technology, 2010, 39(3): 42-44.
[9]   王高坚, 王珍珍, 李嘉嘉, 等. 蓝莓酵素的体外抗氧化及对秀丽隐杆线虫的氧化应激保护作用. 食品工业科技, 2021, 42(15): 343-350.
[9]   Wang G J, Wang Z Z, Li J J, et al. Antioxidant activity in vitro and promoting resistance to oxidative stress in Caenorhabditis elegans of blueberry jiaosu. Science and Technology of Food Industry, 2021, 42(15): 343-350.
[10]   中国药典委员会. 中华人民共和国药典.第一部. 北京: 中国医学出版社, 2020: 97.
[10]   Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. First part. Beijing: China Medical Press, 2020: 97.
[11]   Wan J Q, Gong X H, Wang F X, et al. Comparative analysis of chemical constituents by HPLC-ESI-MSn and antioxidant activities of Dendrobium huoshanense and Dendrobium officinale. Biomedical Chromatography, 2022, 36(1): e5250.
[12]   马荣锋, 唐川, 汪雯瀚, 等. 霍山石斛与铁皮石斛的体外生物活性比较. 食品工业科技, 2019, 40(12): 26-30, 37.
[12]   Ma R F, Tang C, Wang W H, et al. Comparison of biological activities in vitro of Dendrobium huoshanense and Dendrobium officinale. Science and Technology of Food Industry, 2019, 40(12): 26-30, 37.
[13]   国家卫生和计划生育委员会. GB 4789.15-2016食品安全国家标准食品微生物学检验霉菌和酵母计数. [2022-08-22]. http://down.foodmate.net/standard/yulan.php?itemid=49843 .
[13]   National Health and Family Planning Commission of the People’s Republic of China. GB 4789.15-2016 National Standards for Food safety,Microbiological examination of food,Mold and yeast counts. [2022-08-22]. http://down.foodmate.net/standard/yulan.php?itemid=49843 .
[14]   王珍珍, 沙如意, 王高坚, 等. HPLC法同时测定食用植物酵素中12种有机酸. 食品工业科技, 2020, 41(19): 279-285.
[14]   Wang Z Z, Sha R Y, Wang G J, et al. Simultaneous determination of twelve organic acids in edible plant source jiaosu by HPLC. Science and Technology of Food Industry, 2020, 41(19): 279-285.
[15]   Ledoux M, Lamy F. Determination of proteins and sulfobetaine with the folin-phenol reagent. Analytical Biochemistry, 1986, 157(1): 28-31.
pmid: 3766963
[16]   姚妞妞, 常春晖, 于宏伟, 等. 适合奶醋发酵的酵母菌发酵动力学. 食品与发酵工业, 2020, 46(22): 106-112.
[16]   Yao N N, Chang C H, Yu H W, et al. Yeast fermentation kinetics suitable for milk vinegar fermentation. Food and Fermentation Industries, 2020, 46(22): 106-112.
[17]   中华人民共和国商业部. GB/T 10468-1989 水果和蔬菜产品 pH 的测定方法. [2022-08-22]. http://down.foodmate.net/standard/yulan.php?itemid=655 .
[17]   Ministry of Commerce of the People’s Republic of China. GB/T 10468—1989 Fruit and vegetable products-determination pH. [2022-08-22]. http://down.foodmate.net/standard/yulan.php?itemid=655 .
[18]   国家卫生健康委员会,国家市场监督管理总局. GB 12456—2021食品安全国家标准食品中总酸的测定. [2022-08-22]. http://down.foodmate.net/standard/yulan.php?itemid=97830 .
[18]   National Health Commission of the People’s Republic of China,State Administration for Market Regulation. GB 12456—2021 National Standards for Food safety,Determination of total acid in food. [2022-08-22]. http://down.foodmate.net/standard/yulan.php?itemid=97830 .
[19]   Shi M J, Wei X Y, Xu J, et al. Carboxymethylated degraded polysaccharides from enteromorpha prolifera: preparation and in vitro antioxidant activity. Food Chemistry, 2017, 215: 76-83.
doi: 10.1016/j.foodchem.2016.07.151
[20]   张浩然, 范昊安, 顾逸菲, 等. 沙棘酵素发酵过程中代谢产物及抗氧化活性研究. 食品工业科技, 2020, 41(11): 125-133.
[20]   Zhang H R, Fan H A, Gu Y F, et al. Study on metabolites and antioxidant activity of seabuckthorn jiaosu during fermentation. Science and Technology of Food Industry, 2020, 41(11): 125-133.
[21]   沙如意, 王珍珍, 陈小伟, 等. 火龙果酵素在发酵过程中功能成分变化规律及其与抗氧化相关性. 生物资源, 2018, 40(3): 208-217.
[21]   Sha R Y, Wang Z Z, Chen X W, et al. Correlation between functional composition and antioxidant capacity during the fermentation of pitaya jiaosu. Biotic Resources, 2018, 40(3): 208-217.
[22]   Tofalo R, Fusco V, Böhnlein C, et al. The life and times of yeasts in traditional food fermentations. Critical Reviews in Food Science and Nutrition, 2020, 60(18): 3103-3132.
doi: 10.1080/10408398.2019.1677553
[23]   Dzialo M C, Park R, Steensels J, et al. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiology Reviews, 2017, 41(Supp_1): S95-S128.
doi: 10.1093/femsre/fux031
[24]   Abbas C A. Production of antioxidants, aromas, colours, flavours, and vitamins by yeasts. Berlin Heidelberg: Springer Verlag, 2006:285-334.
[25]   鄯晋晓. 四川泡菜菌系分离、筛选及发酵剂的研究. 重庆: 西南大学, 2008.
[25]   Shan J X. Study on the microbial flora in Sichuan sauerkraut and starter culture of sauerkraut. Chongqing: Southwest University, 2008
[26]   薛燕, 李丽, 刘光荣, 等. 铁皮石斛多糖液态发酵工艺及其抗氧化活性研究. 食品工业科技, 2017, 38(9): 155-159.
[26]   Xue Y, Li L, Liu G R, et al. Study on polysaccharides submerged fermentation from Dendrobium officinale and its antioxidant activity. Science and Technology of Food Industry, 2017, 38(9): 155-159.
[27]   Xing L, Miao Y L, Li N, et al. Molecular structure features and lactic acid fermentation behaviors of water- and alkali-soluble polysaccharides from Dendrobium officinale. Journal of Food Science and Technology, 2021, 58(2): 532-540.
doi: 10.1007/s13197-020-04564-6 pmid: 33568846
[28]   徐融融, 卢红梅, 吴震, 等. 不同发酵方式对铁皮石斛醋有机酸及风味特征影响的分析. 中国酿造, 2022, 41(3): 38-44.
[28]   Xu R R, Lu H M, Wu Z, et al. Effect of different fermentation methods on organic acids and flavor characteristics of Dendrobium officinale vinegar. China Brewing, 2022, 41(3): 38-44.
[29]   秦昆鹏, 王志云, 高骞, 等. 乙酸对脂肪代谢的影响及其作用机制. 动物营养学报, 2021, 33(5): 2544-2554.
[29]   Qin K P, Wang Z Y, Gao Q, et al. Effects of acetic acid on fat metabolism and its mechanism. Chinese Journal of Animal Nutrition, 2021, 33(5): 2544-2554.
[30]   郭悦承, 陆伦根. 短链脂肪酸在非酒精性脂肪性肝病发生发展中作用的研究进展. 国际消化病杂志, 2019, 39(3): 145-148.
[30]   Guo Y C, Lu L G. Research progress of short-chain fatty acids in occurrence and development of non-alcoholic fatty liver disease. International Journal of Digestive Diseases, 2019, 39(3): 145-148.
[31]   Cai X F, Ge C H, Xu C X, et al. Expression analysis of oxalate metabolic pathway genes reveals oxalate regulation patterns in spinach. Molecules (Basel, Switzerland), 2018, 23(6): 1286.
doi: 10.3390/molecules23061286
[32]   李宪秀, 何涛, 杨帆, 等. 食叶草的营养活性成分含量及生物活性分析. 食品工业科技.[2022-09-25]. https://doi.org/10.13386/j.issn1002-0306.2022040234.
[32]   Li X X, He T, Yang F, et al. Analysis of nutritional components,functional components and bioactivity of edible dock. Science and Technology of Food industry.[2022-09-25]. https://doi.org/10.13386/j.issn1002-0306.2022040234.
[33]   张影陆, 郝慧英, 徐岩, 等. 苹果酒的酶促与非酶促氧化褐变研究. 食品与发酵工业, 2008, 34(12): 26-29.
[33]   Zhang Y L, Hao H Y, Xu Y, et al. Oxidation browning of cider with and without polyphenoloxidase. Food and Fermentation Industries, 2008, 34(12): 26-29.
[34]   樊秋元. 黑加仑酵素制备及其抗氧化活性研究. 大庆: 黑龙江八一农垦大学, 2019.
[34]   Fan Q Y. Study on preparation and antioxidant activity of blackcurrant Jiaosu. Daqing: Heilongjiang Bayi Agricultural University, 2019.
[35]   李国薇, 樊明涛, 王胜利, 等. 酵母菌种对苹果酒主发酵过程中的多酚组成及抗氧化活性的影响. 中国酿造, 2012, 31(10): 33-37.
[35]   Li G W, Fan M T, Wang S L, et al. Effects of yeasts on polyphenols profiles and antioxidant activity of cider during main fermentation. China Brewing, 2012, 31(10): 33-37.
[36]   Kodama N, Yamada M, Nanba H. Addition of Maitake D-fraction reduces the effective dosage of vancomycin for the treatment of Listeria-infected mice. Japanese Journal of Pharmacology, 2001, 87(4): 327-332.
pmid: 11829152
[37]   蒋增良, 毛建卫, 黄俊, 等. 葡萄酵素在天然发酵过程中体外抗氧化性能的变化. 中国食品学报, 2014, 14(10): 29-34.
[37]   Jiang Z L, Mao J W, Huang J, et al. Changes in antioxidant activity of grape-ferment in vitro during natural fermentation process. Journal of Chinese Institute of Food Science and Technology, 2014, 14(10): 29-34.
[38]   Amerine M A, Pangborn R M, Roessler E B. Principles of sensory evaluation of food. New York: Academic Press, 1965: 145-219.
[39]   Yu X M, Ali M M, Li B Q, et al. Transcriptome data-based identification of candidate genes involved in metabolism and accumulation of soluble sugars during fruit development in ‘Huangguan’ plum. Journal of Food Biochemistry, 2021, 45(9): e13878.
[40]   Zhang X X, Wei X X, Ali M M, et al. Changes in the content of organic acids and expression analysis of citric acid accumulation-related genes during fruit development of yellow (Passiflora edulis f. flavicarpa) and purple (Passiflora edulis f. edulis) passion fruits. International Journal of Molecular Sciences, 2021, 22(11): 5765.
doi: 10.3390/ijms22115765
[41]   Colaric M, Veberic R, Stampar F, et al. Evaluation of peach and nectarine fruit quality and correlations between sensory and chemical attributes. Journal of the Science of Food and Agriculture, 2005, 85(15): 2611-2616.
doi: 10.1002/jsfa.2316
[42]   刘冬雪, 胡海军, 周辉, 等. 蛇莓营养成分的初步分析. 农产品加工, 2020(17): 50-53, 59.
[42]   Liu D X, Hu H J, Zhou H, et al. Preliminary study on nutrient composition of Duchesnea indica Focke. Farm Products Processing, 2020(17): 50-53, 59.
[43]   赵剑波, 姜全, 郭继英, 等. 桃果实风味品质指标测定与品种筛选. 江苏农业科学, 2007, 35(6): 165-168.
[43]   Zhao J B, Jiang Q, Guo J Y, et al. Determination of peach fruit flavor quality index and variety selection. Jiangsu Agricultural Sciences, 2007, 35(6): 165-168.
[44]   Tian J H, Cao Y P, Chen S G, et al. Juices processing characteristics of Chinese bayberry from different cultivars. Food Science & Nutrition, 2019, 7(2): 404-411.
[45]   王俊宇, 尹蓉, 张倩茹, 等. 不同草莓品种果实品质分析. 农产品加工, 2017(14): 30-33.
[45]   Wang J Y, Yin R, Zhang Q R, et al. Analysis on fruit quality of different strawberry varieties. Farm Products Processing, 2017(14): 30-33.
[46]   Mikulic-Petkovsek M, Schmitzer V, Slatnar A, et al. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. Journal of Food Science, 2012, 77(10): C1064-C1070.
doi: 10.1111/j.1750-3841.2012.02896.x
[47]   Jaros D, Thamke I, Raddatz H, et al. Single-cultivar cloudy juice made from table apples: an attempt to identify the driving force for sensory preference. European Food Research and Technology, 2009, 229(1): 51-61.
doi: 10.1007/s00217-009-1025-0
[48]   Li X C, Han L, Li Y R, et al. Protective effect of sinapine against hydroxyl radical-induced damage to mesenchymal stem cells and possible mechanisms. Chemical & Pharmaceutical Bulletin, 2016, 64(4): 319-325.
[49]   王益莉, 顾飞燕, 黄怡雯, 等. 发酵时间对苹果酵素抗氧化活性的影响. 中国食品添加剂, 2017(9): 200-204.
[49]   Wang Y L, Gu F Y, Huang Y W, et al. Effects of fermentation time on antioxidant activity of apple. China Food Additives, 2017(9): 200-204.
[50]   Kogan G, Staško A, Bauerová K, et al. Antioxidant properties of yeast (1→3)-β-D-glucan studied by electron paramagnetic resonance spectroscopy and its activity in the adjuvant arthritis. Carbohydrate Polymers, 2005, 61(1): 18-28.
doi: 10.1016/j.carbpol.2005.02.010
[51]   Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 2004, 37(4): 277-285.
pmid: 15003729
[52]   Lacan D, Baccou J C. High levels of antioxidant enzymes correlate with delayed senescence in nonnetted muskmelon fruits. Planta, 1998, 204(3): 377-382.
doi: 10.1007/s004250050269
[53]   陈小伟, 程勇杰, 蒋立新, 等. 草莓酵素发酵过程中代谢产物及抗氧化性的变化研究. 中国食品学报, 2020, 20(5): 157-165.
[53]   Chen X W, Cheng Y J, Jiang L X, et al. Studies on the changes of metabolites and antioxidant activity during the fermentation process of strawberry jiaosu. Journal of Chinese Institute of Food Science and Technology, 2020, 20(5): 157-165.
[54]   Prasad K N, Yang B, Dong X H, et al. Flavonoid contents and antioxidant activities from Cinnamomum species. Innovative Food Science & Emerging Technologies, 2009, 10(4): 627-632.
[55]   戚一曼, 樊明涛, 程拯艮, 等. 猕猴桃酒主发酵过程中多酚及抗氧化性的研究. 食品研究与开发, 2016, 37(24): 6-12.
[55]   Qi Y M, Fan M T, Cheng Z G, et al. Study on polyphenol composition and antioxidant properties of Kiwi wine in main fermentation process. Food Research and Development, 2016, 37(24): 6-12.
[56]   Lee Y L, Yang J H, Mau J L. Antioxidant properties of water extracts from Monascus fermented soybeans. Food Chemistry, 2008, 106(3): 1128-1137.
doi: 10.1016/j.foodchem.2007.07.047
[57]   Siddhuraju P, Mohan P S, Becker K. Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chemistry, 2002, 79(1): 61-67.
doi: 10.1016/S0308-8146(02)00179-6
[58]   易媛, 左勇, 黄雪芹, 等. 食用植物酵素开发关键技术研究进展. 食品与发酵工业, 2021, 47(7): 316-321.
[58]   Yi Y, Zuo Y, Huang X Q, et al. Research progress of key technology in the development of edible plant Jiaosu. Food and Fermentation Industries, 2021, 47(7): 316-321.
[59]   梁红敏, 刘洁, 史红梅. 食用植物酵素研究进展. 食品工业, 2020, 41(7): 193-197.
[59]   Liang H M, Liu J, Shi H M. Research progress of edible plant source jiaosu. The Food Industry, 2020, 41(7): 193-197.
[1] LI Chao-feng, WU Yu-ping, LI Shuang-shuang, XU Feng-mei, ZHANG Xin-yi, WANG Wei-zhong, TANG Bo-ping. Isolation and Biological Activity of Melanin from Sunflower Seed Shell[J]. China Biotechnology, 2022, 42(11): 88-98.
[2] CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity[J]. China Biotechnology, 2020, 40(9): 18-27.
[3] LI Yang, YU Li-jie, JIN Xiao-xia. Mechanism of Heavy Metal Tolerance Stress of Plants[J]. China Biotechnology, 2015, 35(9): 94-104.
[4] CHEN Jie-mei, XU Cong-cong, CHANG Lei, LIU Yong-ping, MIAO Bing-xuan. Study on Optimization of Soybean Meal Solid-state Fermentation Process for Producing Soybean Antioxidative Peptide by Response Surface Methodology[J]. China Biotechnology, 2012, 32(12): 59-65.
[5] Sang-Soo KWAK Haeng-Soon LEE Xiao-Li Yang. Improving potato plants oxidative stress and salt tolerance by gene transfer both of Cu/Zn superoxide dismutase and ascorbate peroxidase[J]. China Biotechnology, 2008, 28(3): 25-31.
[6] . Effect of magnetic treatment on growth and antioxidant system of Chlorella vulgari[J]. China Biotechnology, 2007, 27(2): 85-89.