Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (11): 99-108    DOI: 10.13523/j.cb.2209009
    
Serum Metabolomics of Ophiopogon japonicus Extract Against Type 2 Diabetes in Mice
ZHANG Jie1,2, LIN Bing-feng2, XU Ping-cui2, WANG Na-ni2, CHEN Yu1,**()
1 Hangzhou Vocational & Technical College, Hangzhou 310018, China
2 Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
Download: HTML   PDF(1501KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To study the protective mechanism of Ophiopogon japonicus extract on Type 2 diabetes mellitus (T2DM) based on metabolomics. Methods: The T2DM mouse model was established by intraperitoneal injection of streptozotocin. Mice were orally administrated with the aqueous extract of Ophiopogon japonicu for 4 weeks. The diabetic phenotypes in serum were measured. Changes in serum metabolites were determined by ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS). Results: Compared with the control group, the fasting glucose, total cholesterol, triglyceride, and low-density lipoprotein cholesterol were increased in the model group, while the high-density lipoprotein cholesterol decreased significantly, and the above indexes were reversed after treatment of Ophiopogon japonicus extract. The metabonomic results showed that 43 differential metabolites were found between the control group and the model group. These metabolites were enriched in 18 pathways. Ophiopogon japonicus extract significantly decreased the content of glyceric acid, malonic semialdehyde, and 4-hydroxyphenylpyruvic acid in T2DM mice. Ophiopogon japonicus extract could regulate 7 pathways, such as ubiquinone and other terpenoid-quinone biosynthesis. Conclusion: The hypoglycemic and lipid-lowering effect of Ophiopogon on T2DM may be related to ubiquinone and other terpenoid-quinone biosynthesis.



Key wordsMetabonomics      Type 2 diabetes      Ophiopogon japonicas      Serum      UPLC-Q/TOF-MS     
Received: 03 September 2022      Published: 07 December 2022
ZTFLH:  Q819  
Cite this article:

ZHANG Jie, LIN Bing-feng, XU Ping-cui, WANG Na-ni, CHEN Yu. Serum Metabolomics of Ophiopogon japonicus Extract Against Type 2 Diabetes in Mice. China Biotechnology, 2022, 42(11): 99-108.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2209009     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I11/99

Fig.1 Effect of Ophiopogon japonicus on the levels of FBG, TC, TG, LDL-C and HDL-C in serum of T2DM model mice x -±s,n=6,* P<0.05; ** P<0.01
Fig.2 PCA 3D score plots
Fig.3 PLS-DA score plots
Fig.4 OPLS-DA score plots and Permutation test charts
编号 HMDB号 代谢物 质荷比
(m/z)
保留时间
/min
分子式 加合物 正常组
vs.模
型组
模型组
vs.麦
冬组
1 HMDB0000700 Hydroxypropionic acid 71.013 8 0.06 C3H6O3 M-H2O-H **
2 HMDB0011111 Malonic semialdehyde 87.008 7 9.58 C3H4O3 M-H * *
3 HMDB0000139 Glyceric acid 87.008 7 8.01 C3H6O4 M-H2O-H * *
4 HMDB0000630 Cytosine 92.025 3 19.84 C4H5N3O M-H2O-H **
5 HMDB0000718 Isovaleric acid 101.060 7 12.14 C5H10O2 M-H **
6 HMDB0000019 Alpha-ketoisovaleric acid 115.040 0 0.06 C5H8O3 M-H **
7 HMDB0000227 Mevalonic acid 129.055 7 5.34 C6H12O4 M-H2O-H **
8 HMDB0001644 D-Xylulose 131.034 9 3.09 C5H10O5 M-H2O-H **
9 HMDB0006483 D-Aspartic acid 132.030 1 0.05 C4H7NO4 M-H **
10 HMDB0000157 Hypoxanthine 135.031 3 10.56 C5H4N4O M-H **
11 HMDB0000635 Succinylacetone 139.040 0 9.60 C7H10O4 M-H2O-H **
12 HMDB0000819 Normetanephrine 164.071 7 7.63 C9H13NO3 M-H2O-H *
13 HMDB0014634 Miglitol 188.092 7 1.88 C8H17NO5 M-H2O-H **
14 HMDB0000291 Vanillylmandelic acid 197.045 4 9.84 C9H10O5 M-H *
15 HMDB0006059 20-Carboxy-leukotriene B4 347.186 1 9.38 C20H28O5 M-H20-H *
16 HMDB0012136 1-Amino-propan-2-ol 76.076 3 0.92 C3H9NO M+H *
17 HMDB0000097 Choline 86.096 9 1.10 C5H14NO M+H-H2O **
18 HMDB0033827 (2E)-2-Heptenal 95.085 9 0.60 C7H12O M+H-H2O **
19 HMDB0002362 2,4-Diaminobutyric acid 101.071 2 14.00 C4H10N2O2 M+H-H2O *
20 HMDB0000459 3-Methylcrotonylglycine 140.070 4 10.70 C7H11NO3 M+H-H2O **
21 HMDB0000182 L-Lysine 147.112 6 10.59 C6H14N2O2 M+H *
22 HMDB0000205 Phenylpyruvic acid 165.054 3 0.11 C9H8O3 M+H *
23 HMDB0000159 L-Phenylalanine 166.086 1 2.91 C9H11NO2 M+H **
24 HMDB0001431 Pyridoxamine 169.096 9 1.09 C8H12N2O2 M+H **
25 HMDB0000446 N-alpha-acetyl-L-lysine 171.112 5 1.08 C8H16N2O3 M+H-H2O **
26 HMDB0000701 Hexanoylglycine 174.112 3 8.11 C8H15NO3 M+H **
27 HMDB0014018 4-Hydroxypropofol 177.127 1 15.79 C12H18O2 M+H-H2O ** *
28 HMDB0000707 4-Hydroxyphenylpyruvic acid 181.049 2 15.68 C9H8O4 M+H ** *
29 HMDB0000158 L-Tyrosine 182.080 8 7.09 C9H11NO3 M+H **
30 HMDB0001024 Phosphohydroxypyruvic acid 184.985 1 16.48 C3H5O7P M+H **
31 HMDB0002302 Indole-3-propionic acid 190.085 9 9.60 C11H11NO2 M+H **
32 HMDB0012948 Formyl-5-hydroxykynurenamine 191.080 9 1.11 C10H12N2O3 M+H-H2O **
33 HMDB0000350 3-Hydroxysebacic acid 201.111 8 10.70 C10H18O5 M+H-H2O **
34 HMDB0013286 N-Undecanoylglycine 213.982 5 19.80 C13H25NO3 M+H-H2O ** *
35 HMDB0011175 Leucylproline 229.154 1 1.08 C11H20N2O3 M+H **
36 HMDB0011170 Gamma-glutamylisoleucine 261.143 9 6.61 C11H20N2O5 M+H ** *
37 HMDB0013133 Methylmalonylcarnitine 262.127 9 1.06 C11H19NO6 M+H *
38 HMDB0004701 9,10-Epoxyoctadecenoic acid 279.230 9 14.57 C18H32O3 M+H-H2O **
39 HMDB0000252 Sphingosine 282.278 5 16.11 C18H37NO2 M+H-H2O *
40 HMDB0001388 Alpha-linolenic acid 301.215 0 13.39 C18H30O2 M+H *
41 HMDB0001043 Arachidonic acid 305.246 6 14.28 C20H32O2 M+H ** *
42 HMDB0000222 Palmitoylcarnitine 400.341 6 17.35 C23H45NO4 M+H **
43 HMDB0011760 Cer(d18:0/16:0) 540.534 1 16.33 C34H69NO3 M+H **
44 HMDB0010392 LysoPC[20:2(11Z,14Z)/0:0] 548.369 9 14.45 C28H56NO7P M+H ** ↓。*
Table 1 Potential biomarkers of Ophiopogon japonicus in treatment of T2DM
Fig.5 Differential metabolite pathway map between the blank group and the model group (a) and differential metabolite pathway map between the Ophiopogon group and the model group(b) (a)a: Phenylalanine, tyrosine and tryptophan biosynthesis; b:Ubiquinone and other terpenoid-quinone biosynthesis; c: Phenylalanine metabolism; d: Alpha-linolenic acid metabolism; e: Arachidonic acid metabolism; f: Tyrosine metabolism; g: Pentose and glucuronate interconversions; h: Terpenoid backbone biosynthesis; i: Beta-alanine metabolism; j: Glycerolipid metabolism; k: Glyoxylate and dicarboxylate metabolism; l: Vitamin B6 metabolism; m: Glycine, serine and threonine metabolism; n: Glycerophospholipid metabolism; o: Sphingolipid metabolism; p: Purine metabolism; q: Valine, leucine and isoleucine degradation; r: Propionate metabolism. (b)a: Ubiquinone and other terpenoid-quinones biosynthesis; b: Beta-alanine metabolism; c: Glycerolipid metabolism; d: Tyrosine metabolism; e: Glyoxylate and dicarboxylate metabolism; f: Glycine, serine and threonine metabolism; g: Propionate metabolism
[1]   Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. International Journal of Molecular Sciences, 2020, 21(17): 6275.
doi: 10.3390/ijms21176275
[2]   Zheng Y, Ley S H, Hu F B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology, 2018, 14(2): 88-98.
doi: 10.1038/nrendo.2017.151 pmid: 29219149
[3]   Philippe J, Raccah D. Treating type 2 diabetes: how safe are current therapeutic agents? International Journal of Clinical Practice, 2009, 63(2): 321-332.
doi: 10.1111/j.1742-1241.2008.01980.x pmid: 19196370
[4]   李晶, 苏薇薇, 王永刚, 等. 麦冬提取物对实验性2型糖尿病大鼠的保护作用. 中山大学学报(自然科学版), 2017, 56(3): 119-124.
[4]   Li J, Su W W, Wang Y G, et al. Protective effects of Ophiopogonis japonicas extract on experimental type 2 diabetic rats. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2017, 56(3): 119-124.
[5]   He Q, Zhang T Q, Jin B, et al. Exploring the regulatory mechanism of modified Huanglian Maidong Decoction on type 2 diabetes mellitus biological network based on systematic pharmacology. Evidence-Based Complementary and Alternative Medicine, 2021, 2021: 1768720.
[6]   彭婉, 马骁, 王建, 等. 麦冬化学成分及药理作用研究进展. 中草药, 2018, 49(2): 477-488.
[6]   Peng W, Ma X, Wang J, et al. Research progress on chemical constituents and pharmacological effects of Ophiopogon japonicas. Chinese Traditional and Herbal Drugs, 2018, 49(2): 477-488.
[7]   Zhu Y Y, Cong W J, Shen L, et al. Fecal metabonomic study of a polysaccharide, MDG-1 from Ophiopogon japonicus on diabetic mice based on gas chromatography/time-of-flight mass spectrometry (GC TOF/MS). Molecular BioSystems, 2014, 10(2): 304-312.
doi: 10.1039/C3MB70392D
[8]   Li Y, Zhu Y Y, Shi L L, et al. UPLC-TOF/MS based urinary metabonomic studies reveal mild prevention effects of MDG-1 on metabolic disorders in diet-induced obese mice. Analytical Methods, 2014, 6(12): 4171.
doi: 10.1039/c4ay00796d
[9]   Zhou Y, Men L H, Pi Z F, et al. Fecal metabolomics of type 2 diabetic rats and treatment with Gardenia jasminoides Ellis based on mass spectrometry technique. Journal of Agricultural and Food Chemistry, 2018, 66(6): 1591-1599.
doi: 10.1021/acs.jafc.7b06082
[10]   费烨, 李红梅, 孙浩, 等. 苦荞清蛋白酶解物对2型糖尿病小鼠血糖血脂的作用. 食品科技, 2020, 45(5): 52-57.
[10]   Fei Y, Li H M, Sun H, et al. Effects of Tartary buckwheat albumin hydrolysate on blood glucose and blood lipid in type 2 diabetic mice. Food Science and Technology, 2020, 45(5): 52-57.
[11]   Guo W J, Ouyang H, Liu M, et al. Based on plasma metabonomics and network pharmacology exploring the therapeutic mechanism of Gynura procumbens on type 2 diabetes. Frontiers in Pharmacology, 2021, 12: 674379.
doi: 10.3389/fphar.2021.674379
[12]   Xu M, Wu R X, Liang Y, et al. Protective effect and mechanism of Qishiwei Zhenzhu pills on cerebral ischemia-reperfusion injury via blood-brain barrier and metabonomics. Biomedicine & Pharmacotherapy, 2020, 131: 110723.
doi: 10.1016/j.biopha.2020.110723
[13]   Xie H, Hua Z Y, Guo M Y, et al. Gut microbiota and metabonomics used to explore the mechanism of Qing’e Pills in alleviating osteoporosis. Pharmaceutical Biology, 2022, 60(1): 785-800.
doi: 10.1080/13880209.2022.2056208
[14]   Crane F L. Biochemical functions of coenzyme Q10. Journal of the American College of Nutrition, 2001, 20(6): 591-598.
pmid: 11771674
[15]   Gutierrez-Mariscal F M, Yubero-Serrano E M, Villalba J M, et al. Coenzyme Q10: from bench to clinic in aging diseases, a translational review. Critical Reviews in Food Science and Nutrition, 2019, 59(14): 2240-2257.
doi: 10.1080/10408398.2018.1442316 pmid: 29451807
[16]   Garrido-Maraver J, Cordero M D, Oropesa-Avila M, et al. Clinical applications of coenzyme Q10. Frontiers in Bioscience (Landmark Edition), 2014, 19(4): 619-633.
[17]   Hernández-Camacho J D, Bernier M, López-Lluch G, et al. Coenzyme Q10 supplementation in aging and disease. Frontiers in Physiology, 2018, 9: 44.
doi: 10.3389/fphys.2018.00044 pmid: 29459830
[18]   Kucharská J, Braunová Z, Ulicná O, et al. Deficit of coenzyme Q in heart and liver mitochondria of rats with streptozotocin-induced diabetes. Physiological Research, 2000, 49(4): 411-418.
pmid: 11072800
[19]   Sena C M, Nunes E, Gomes A, et al. Supplementation of coenzyme Q10 and α-tocopherol lowers glycated hemoglobin level and lipid peroxidation in pancreas of diabetic rats. Nutrition Research, 2008, 28(2): 113-121.
doi: 10.1016/j.nutres.2007.12.005
[20]   Devadasu V R, Wadsworth R M, Kumar M N V R. Protective effects of nanoparticulate coenzyme Q10 and curcumin on inflammatory markers and lipid metabolism in streptozotocin-induced diabetic rats: a possible remedy to diabetic complications. Drug Delivery and Translational Research, 2011, 1(6): 448-455.
doi: 10.1007/s13346-011-0041-3 pmid: 25786365
[21]   王玉英, 戚欣, 李静. 磷酸甘油酸激酶1与肿瘤. 药学学报, 2019, 54(6): 978-983.
[21]   Wang Y Y, Qi X, Li J. Phosphoglycerate kinase 1 and cancer. Acta Pharmaceutica Sinica, 2019, 54(6): 978-983.
[22]   Zhao J Y, Feng K R, Wang F, et al. A retrospective overview of PHGDH and its inhibitors for regulating cancer metabolism. European Journal of Medicinal Chemistry, 2021, 217: 113379.
doi: 10.1016/j.ejmech.2021.113379
[23]   何流琴, 金顺顺, 周锡红, 等. 丝氨酸对动物机体健康的影响研究进展. 动物营养学报, 2020, 32(10): 4480-4490.
[23]   He L Q, Jin S S, Zhou X H, et al. Research progress on effects of serine on animal health. Chinese Journal of Animal Nutrition, 2020, 32(10): 4480-4490.
[24]   Zeng M M, Liang Y Z, Li H D, et al. Plasma metabolic fingerprinting of childhood obesity by GC/MS in conjunction with multivariate statistical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52(2): 265-272.
doi: 10.1016/j.jpba.2010.01.002 pmid: 20092977
[25]   宁萌, 李田乐, 段大为, 等. 2型糖尿病早期大鼠血清代谢组学分析. 生物医学工程与临床, 2016, 20(2): 131-135.
[25]   Ning M, Li T L, Duan D W, et al. Metabolomics study of rat serum of early stage type 2 diabetic model. Biomedical Engineering and Clinical Medicine, 2016, 20(2): 131-135.
[1] GAN Qiao, MENG Qing-xiong. Intestinal Microflora and Its Metabolites in Relation to the Pathogenesis and Intervention of T2DM[J]. China Biotechnology, 2022, 42(3): 62-71.
[2] WANG De-hua, MA Yi, HAN Lei, XIAO Xing, LI Yan-wei, DANG Shi-ying, FAN Zhi-yong, WEN Tao, HONG An. Preparation of Novel Recombinant PACAP Derivative MPL-2 and Its Effect on Anti-type 2 Diabetes Mellitus[J]. China Biotechnology, 2017, 37(5): 59-65.
[3] LIU Li-ping, ZHANG Chun, YIN Shuang, WANG Qi, ZHANG Yao, YU Rong, LIU Yong-dong, SU Zhi-guo. Design, Preparation, Characterization and Preliminary Evaluation of an Albumin Binding Peptide-Doxorubicin Conjugate[J]. China Biotechnology, 2017, 37(4): 68-75.
[4] LI Cheng-yuan, ZHANG Jing-jing, QIAN Kai, MIAO Ya-na, CAI Yan-fei, YANG Jian-feng, HE Yang, JIN Jian. Expression of Human Serum Albumin-interferon α2b Fusion Protein in Chinese Hamster Ovary Cells[J]. China Biotechnology, 2016, 36(7): 7-14.
[5] ZHONG Cheng, LIU Ling-pu, LI Qing-liang, YANG Pan-fei, HAO Jun-guang, JIA Shi-ru. Analyze the Mechanism of Flavor Compounds Formation Using Metabonomics Method During Industrial Beer Fermentation[J]. China Biotechnology, 2016, 36(12): 49-58.
[6] MA Yi, ZHAO Shao-jun, HONG An. Screening and Identification of the New Human Serum Albumin-specific Binding Peptides[J]. China Biotechnology, 2015, 35(5): 74-80.
[7] WEI Dong, WULUMUHAN Nazierbieke, DUAN Shi-xiong, YAN Fang, ENTOMACK Borrathybay. Role of Outer Membrane Protein H in the Pathogenesis of Avian Pasteurella multicida Strain C48-3[J]. China Biotechnology, 2014, 34(06): 31-39.
[8] LIU Ying-fu, HUO Jing-rui, FAN Guo-cai, SUN Zhi-xian, WANG Qing-ming. Construction and Verification of a Novel System for B-cell Epitope Display[J]. China Biotechnology, 2012, 32(6): 64-68.
[9] SUN Cai-xia, WANG Ying, WU Xiao-fei, CHEN Li-jun, WU Zhi-jie. Metabonomic Study on the Composition of Insect-resistant Transgenic Cottonseeds[J]. China Biotechnology, 2012, 32(11): 35-41.
[10] SUN Cai-xia, WANG Ying, WU Xiao-fei, CHEN Li-jun, WU Zhi-jie. Metabonomic Study on the Composition of Insect-resistant Transgenic Cottonseeds[J]. China Biotechnology, 2012, 32(11): 35-41.
[11] GONG Di, YI Xiao-ping, ZHANG Yuan-xing. A Study on Scale-up Process for Microcarrier Cultue of MDCK Cells Using Low Serum Medium[J]. China Biotechnology, 2012, 32(09): 55-60.
[12] DU Cai-he, HU Fang, WEI Ting-ting, ZHANG Ren-min, ZHANG Hong-lin, ZHOU Dong-rui, LU Zu-hong. Analysis of the Bacterial Community in Gastric Samples from Mice with TypeⅡDiabetes by Using PCR-DGGE Fingerprint[J]. China Biotechnology, 2012, 32(03): 25-31.
[13] ZOU Hai-jie, WU Xian-bin, PAN Jian-yi, ZHAO Fu-kun. Cloning and Expression of ompW Location in Outer Membrane of Escherichia coli[J]. China Biotechnology, 2011, 31(12): 46-50.
[14] LIU Yan-jie, JI Hong, LIN Lu-xia, ZANG Xue-zhang, SONG Chang-zheng, RONG Hai-qin. Solid Phase Peptide Synthesis and Analysis for Exendin-4[J]. China Biotechnology, 2011, 31(02): 69-73.
[15] DENG Meng-yao, CAO Ya. Advances in the Serum Secretome of Cancer[J]. China Biotechnology, 2010, 30(11): 83-87.