Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (9): 116-123    DOI: 10.13523/j.cb.2207040
    
Organization, Implementation and Thinking of the Key Projects of ‘Stem Cell and Transformation Research’ in China
YANG Zhe,CHEN Qi,GUO Wei,WANG Jing,ZHANG Yi-ping,LU Shan,YU Zhen-hang,SHEN Jian-zhong*()
China National Center for Biotechnology Development, Beijing 100039, China
Download: HTML   PDF(581KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

During the 13th Five Year Plan period, the Ministry of science and technology set up the National Key Research and Development Program ‘stem cell and transformation research’. After five years of implementation, the program has made important progress. Through reviewing the approval and implementation of the project, this paper summarizes the experience and shortcomings in the management, and puts forward relevant suggestions for stem cell research and deployment in the 14th Five Year Plan, so as to further enhance the core competitiveness of China’s stem cell and transformation research, and accelerate the promotion of stem cell research results to benefit people’s health.



Key wordsStem cell and transformation research      Key projects      Project management     
Received: 19 July 2022      Published: 10 October 2022
ZTFLH:  Q813  
Corresponding Authors: Jian-zhong SHEN     E-mail: shenjz@cncbd.org.cn
Cite this article:

YANG Zhe,CHEN Qi,GUO Wei,WANG Jing,ZHANG Yi-ping,LU Shan,YU Zhen-hang,SHEN Jian-zhong. Organization, Implementation and Thinking of the Key Projects of ‘Stem Cell and Transformation Research’ in China. China Biotechnology, 2022, 42(9): 116-123.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2207040     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I9/116

任务名称 分解任务模块 指南部署情况 /年份 申请
立项
立项率
/%
2016 2017 2018 2019 2020
任务1:多能干细胞的建立与干性维持机制 任务1-1:多能干细胞多能性的建立与维持的调控机制 2 2 1 2 - 65 19 29.2
任务1-2:多能干细胞谱系分化的调控机制及其示踪 1 2 1 - -
任务1-3:细胞类型转换的分子调控机制 1 - - - -
任务1-4:细胞周期与细胞分裂模式在多能干细胞干性维持中的作用 1 1 1 - -
任务2:组织干细胞的获得、功能和调控机制 任务2-1:组织干细胞的增殖分化调控 1 1 1 1 - 117 13 11.1
任务2-2:正常生理及病理条件下组织干细胞的变化与作用 1 3 2 - -
任务2-3:组织干细胞的分离、扩增与诱导分化 - 1 - - -
任务2-4:组织干细胞研究的动物模型 - - 1 - -
任务3:干细胞定向分化及细胞转分化机制 任务3-1:干细胞定向分化和细胞转分化获得特定类型功能细胞 - 2 2 1 - 98 12 12.2
任务3-2:干细胞状态转换和功能变化过程中分子调控机制研究 1 1 - 1 -
任务3-3:多谱系标记、单细胞分析等新技术新方法的研究 - - 1 - -
任务3-4:体细胞体内定向转分化研究 1 1 - - -
任务4:干细胞移植后体内功能建立与调控机制 任务4-1:移植细胞的存活与迁移 - - 1 - - 118 14 11.9
任务4-2:移植细胞与组织器官的结构功能整合与重建 - 1 - 1 -
任务4-3:移植后体内示踪 1 1 1 - -
任务4-4:移植后体内免疫耐受研究 1 2 - - -
任务5:基于干细胞的组织和器官的功能再造 任务5-1:用于组织及器官再造的关键种子细胞的获得技术 1 1 1 - 1 126 12 9.5
任务5-2:干细胞相关功能单元或组织模块的构建 1 1 1 - -
任务5-3:组织功能模块移植及体内功能实现 - 1 1 1 -
任务6:干细胞资源库 任务6-1:人体干细胞资源库 1 - 1 - - 48 4 8.3
任务6-2:基于干细胞的基因修饰与基因治疗 - - - 1 -
任务6-3:干细胞队列研究 - 1 - - -
任务7:利用动物模型开展高效的干细胞临床前评估 任务7-1:灵长类基因编辑 1 - 1 - - 22 5 22.7
任务7-2:神经系统疾病动物模型的建立 - 1 - - -
任务7-3:生殖系统疾病模型的建立 - - - 1 -
任务7-4:治疗安全性和有效性评估 - - - 1
任务8:干细胞临床研究 任务8-1:针对重大疾病的干细胞治疗技术与产品研发 - - - 2 - 187 12 6.4
任务8-2:规范化的干细胞临床试验研究 - 5 3 - 3
任务8-3:基于干细胞的生物材料、组织工程和器官再造研究 - - - 1 -
任务8-4:干细胞及相关产品临床应用的规范与标准研究 1 - - - -
青年科学家项目 10 10 10 10 5 165 45 27.3
合计 - - - - - - 946 136 14.4
Table 1 Deployment of each task module in tasks
单位性质 立项数 资助经费
/亿元
经费占比/%
高校 88 15.4 58.3
事业型研究单位 34 7.8 29.5
其他事业单位 13 3.0 11.4
企业 1 0.2 0.8
Table 2 Statistics of applications and projects by nature of enterprise in program
[1]   Wang C F, Liu X Y, Gao Y W, et al. Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nature Cell Biology, 2018, 20(5): 620-631.
doi: 10.1038/s41556-018-0093-4 pmid: 29686265
[2]   An C R, Feng G H, Zhang J X, et al. Overcoming autocrine FGF signaling-induced heterogeneity in naive human ESCs enables modeling of random X chromosome inactivation. Cell Stem Cell, 2020, 27(3): 482-497, e4.
doi: S1934-5909(20)30269-1 pmid: 32673569
[3]   Yang Y, Liu B, Xu J, et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell, 2017, 169(2): 243-257, e25.
doi: S0092-8674(17)30183-6 pmid: 28388409
[4]   Niu Y Y, Sun N Q, Li C, et al. Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science, 2019, 366(6467): eaaw5754.
doi: 10.1126/science.aaw5754
[5]   Xiang L F, Yin Y, Zheng Y, et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature, 2020, 577(7791): 537-542.
doi: 10.1038/s41586-019-1875-y
[6]   Peng G D, Suo S B, Cui G Z, et al. Molecular architecture of lineage allocation and tissue organization in early mouse embryo. Nature, 2019, 572(7770): 528-532.
doi: 10.1038/s41586-019-1469-8
[7]   Bian Z L, Gong Y D, Huang T, et al. Deciphering human macrophage development at single-cell resolution. Nature, 2020, 582(7813): 571-576.
doi: 10.1038/s41586-020-2316-7
[8]   Dong F, Hao S, Zhang S, et al. Differentiation of transplanted haematopoietic stem cells tracked by single-cell transcriptomic analysis. Nature Cell Biology, 2020, 22(6): 630-639.
doi: 10.1038/s41556-020-0512-1 pmid: 32367048
[9]   Zhong S J, Ding W Y, Sun L, et al. Decoding the development of the human hippocampus. Nature, 2020, 577(7791): 531-536.
doi: 10.1038/s41586-019-1917-5
[10]   Wu X, Wang Y, Huang R, et al. SOSTDC1-producing follicular helper T cells promote regulatory follicular T cell differentiation. Science, 2020, 369(6506): 984-988.
doi: 10.1126/science.aba6652 pmid: 32820125
[11]   Xiang C G, Du Y Y, Meng G F, et al. Long-term functional maintenance of primary human hepatocytes in vitro. Science, 2019, 364(6438): 399-402.
doi: 10.1126/science.aau7307
[12]   Wang J Q, Wang L Y, Feng G H, et al. Asymmetric expression of LincGET biases cell fate in two-cell mouse embryos. Cell, 2018, 175(7): 1887-1901, e18.
doi: S0092-8674(18)31564-2 pmid: 30550787
[13]   Liu J D, Gao M W, He J P, et al. The RNA m6A reader YTHDC 1 silences retrotransposons and guards ES cell identity. Nature, 2021, 591(7849): 322-326.
doi: 10.1038/s41586-021-03313-9
[14]   Zhang C X, Chen Y S, Sun B F, et al. m6A modulates haematopoietic stem and progenitor cell specification. Nature, 2017, 549(7671): 273-276.
doi: 10.1038/nature23883
[15]   Guo C J, Ma X K, Xing Y H, et al. Distinct processing of lncRNAs contributes to non-conserved functions in stem cells. Cell, 2020, 181(3): 621-636, e22.
doi: 10.1016/j.cell.2020.03.006
[16]   Zhou F, Wang R, Yuan P, et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature, 2019, 572(7771): 660-664.
doi: 10.1038/s41586-019-1500-0
[17]   Zeng Y, Liu C, Gong Y D, et al. Single-cell RNA sequencing resolves spatiotemporal development of pre-thymic lymphoid progenitors and thymus organogenesis in human embryos. Immunity, 2019, 51(5): 930-948, e6.
doi: S1074-7613(19)30404-2 pmid: 31604687
[18]   Wei Y L, Wang Y, Jia Y M, et al. Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science, 2021, 371(6532): eabb1625.
doi: 10.1126/science.abb1625
[19]   Zhang L, Liu G W, Lv K Q, et al. Surface-anchored nanogel coating endows stem cells with stress resistance and reparative potency via turning down the cytokine-receptor binding pathways. Advanced Science, 2021, 8(3): 2003348.
doi: 10.1002/advs.202003348
[20]   Li Q J, Xu Y C, Lv K Q, et al. Small extracellular vesicles containing miR-486-5p promote angiogenesis after myocardial infarction in mice and nonhuman primates. Science Translational Medicine, 2021, 13(584): eabb0202.
doi: 10.1126/scitranslmed.abb0202
[21]   Kong Y, Cao X N, Zhang X H, et al. Atorvastatin enhances bone marrow endothelial cell function in corticosteroid-resistant immune thrombocytopenia patients. Blood, 2018, 131(11): 1219-1233.
doi: 10.1182/blood-2017-09-807248 pmid: 29288170
[22]   Chen B, Li Y, Yu B, et al. Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations. Cell, 2018, 174(3): 521-535, e13.
doi: S0092-8674(18)30730-X pmid: 30033363
[23]   Han M D, Chen L, Aras K, et al. Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery. Nature Biomedical Engineering, 2020, 4(10): 997-1009.
doi: 10.1038/s41551-020-00604-w
[24]   Yue Y N, Xu W H, Kan Y N, et al. Extensive germline genome engineering in pigs. Nature Biomedical Engineering, 2021, 5(2): 134-143.
doi: 10.1038/s41551-020-00613-9 pmid: 32958897
[25]   Tan T, Wu J, Si C Y, et al. Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo. Cell, 2021, 184(8): 2020-2032, e14.
doi: 10.1016/j.cell.2021.03.020
[26]   Zhang X H, Zhu B Y, Chen L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nature Biotechnology, 2020, 38(7): 856-860.
doi: 10.1038/s41587-020-0527-y pmid: 32483363
[27]   Zhang X H, Chen L, Zhu B Y, et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nature Cell Biology, 2020, 22(6): 740-750.
doi: 10.1038/s41556-020-0518-8 pmid: 32393889
[28]   Wang F, Zhang W Q, Yang Q Y, et al. Generation of a Hutchinson-Gilford progeria syndrome monkey model by base editing. Protein & Cell, 2020, 11(11): 809-824.
[29]   Chen Y C, Yu J H, Niu Y Y, et al. Modeling rett syndrome using TALEN-edited MECP 2 mutant cynomolgus monkeys. Cell, 2017, 169(5): 945-955, e10.
doi: 10.1016/j.cell.2017.04.035
[30]   Yan S, Tu Z C, Liu Z M, et al. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell, 2018, 173(4): 989-1002, e13.
doi: 10.1016/j.cell.2018.03.005
[31]   中国细胞生物学学会. T/CSCB 001 - 2020 干细胞通用要求. [2020-08-30]. https://www.cscb.org.cn/upload/doc/20210105/1554496813.pdf.
[31]   Chinese Society for Cell Biology. T/CSCB 001 - 2020 General requirements for stem cells. [2020-08-30]. https://www.cscb.org.cn/upload/doc/20210105/1554496813.pdf.
[32]   中国细胞生物学学会. T/CSCB 002 - 2020 人胚胎干细胞. [2020-08-30]. https://www.cscb.org.cn/upload/doc/20210105/1554496813.pdf.
[32]   Chinese Society for Cell Biology. T/CSCB 001 - 2020 Human embryonic stem cell. [2020-08-30]. https://www.cscb.org.cn/upload/doc/20210105/1556131575.pdf.
[33]   Shi M, Li Y Y, Xu R N, et al. Mesenchymal stem cell therapy in decompensated liver cirrhosis: a long-term follow-up analysis of the randomized controlled clinical trial. Hepatology International, 2021, 15(6): 1431-1441.
doi: 10.1007/s12072-021-10199-2 pmid: 34843069
[34]   Ma Q W, Ma Y, Dai X T, et al. Regeneration of functional alveoli by adult human SOX9+ airway basal cell transplantation. Protein & Cell, 2018, 9(3): 267-282.
No related articles found!