Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (12): 61-68    DOI: 10.13523/j.cb.2207003
    
Application of Laponite in Tissue Regeneration
XU Xiong-cheng,LUO Kai()
Fujian Key Laboratory of Oral Diseases, Stomatological Key Laboratory of Fujian College and University, Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
Download: HTML   PDF(425KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Tissue defects caused by trauma, tumors and congenital developmental abnormalities seriously affect the physiological function and mental health of patients. Processes of tissue regeneration and repair are complex. The body’s ability to regenerate and repair tissue defects gradually weakens, which is mainly based on scar repair with fibrous capsule. Laponite (LAP) has been widely used for functionalized modification of tissue regeneration biomaterials due to its unique nano-layered structure and surface electrochemical characteristics, which can interact with a variety of biomolecules and drugs and exhibit better cytocompatibility and bioactivity. The properties and characteristics of LAP and its application in the field of tissue regeneration and repair are reviewed in order to promote better clinical translation of LAP research outcomes.



Key wordsLaponite      Tissue regeneration      Stem cell      Immunoregulation     
Received: 04 July 2022      Published: 05 January 2023
ZTFLH:  R318  
Corresponding Authors: Kai LUO     E-mail: luokai39@163.com
Cite this article:

XU Xiong-cheng,LUO Kai. Application of Laponite in Tissue Regeneration. China Biotechnology, 2022, 42(12): 61-68.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2207003     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I12/61

[1]   Afewerki S, Magalhães L S S M, Silva A D R, et al. Bioprinting a synthetic smectic clay for orthopedic applications. Advanced Healthcare Materials, 2019, 8(13): e1900158.
[2]   Gaharwar A K, Singh I, Khademhosseini A. Engineered biomaterials for in situ tissue regeneration. Nature Reviews Materials, 2020, 5(9): 686-705.
doi: 10.1038/s41578-020-0209-x
[3]   Gaharwar A K, Cross L M, Peak C W, et al. 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing. Advanced Materials, 2019, 31(23): e1900332.
[4]   Das S S, Neelam, Hussain K, et al. Laponite-based nanomaterials for biomedical applications: a review. Current Pharmaceutical Design, 2019, 25(4): 424-443.
doi: 10.2174/1381612825666190402165845 pmid: 30947654
[5]   Villalba-Rodríguez A M, Martínez-González S, Sosa-Hernández J E, et al. Nanoclay/Polymer-based hydrogels and enzyme-loaded nanostructures for wound healing applications. Gels (Basel, Switzerland), 2021, 7(2): 59.
[6]   田园, 谢利, 田卫东. 硅酸镁锂复合材料在再生医学领域的应用. 口腔生物医学, 2020, 11(1): 60-63.
[6]   Tian Y, Xie L, Tian W D. Application of laponite composite materials in the field of regenerative medicine. Oral Biomedicine, 2020, 11(1): 60-63.
[7]   王明霞, 刘志辉. 硅酸镁锂在生物医学领域的研究进展及应用. 口腔医学研究, 2021, 37(4): 292-295.
doi: 10.13701/j.cnki.kqyxyj.2021.04.004
[7]   Wang M X, Liu Z H. Research progress and application of synthetic nanosilicates in biomedical field. Journal of Oral Science Research, 2021, 37(4): 292-295.
doi: 10.13701/j.cnki.kqyxyj.2021.04.004
[8]   Dong J N, Cheng Z N, Tan S W, et al. Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert Opinion on Drug Delivery, 2021, 18(6): 695-714.
doi: 10.1080/17425247.2021.1862792
[9]   Carrow J K, Cross L M, Reese R W, et al. Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17): E3905-E3913.
[10]   梁馨予, 石佳博, 陈文川, 等. 硅酸镁锂在骨组织工程中的研究进展. 国际口腔医学杂志, 2018, 45(3): 340-345.
[10]   Liang X Y, Shi J B, Chen W C, et al. Research progress on synthetic nanosilicates in bone tissue engineering. International Journal of Stomatology, 2018, 45(3): 340-345.
[11]   Liu C Q, Pei M, Li Q F, et al. Decellularized extracellular matrix mediates tissue construction and regeneration. Frontiers of Medicine, 2022, 16(1): 56-82.
doi: 10.1007/s11684-021-0900-3
[12]   Dziki J L, Sicari B M, Wolf M T, et al. Immunomodulation and mobilization of progenitor cells by extracellular matrix bioscaffolds for volumetric muscle loss treatment. Tissue Engineering Part A, 2016, 22(19-20): 1129-1139.
pmid: 27562630
[13]   Sadtler K, Estrellas K, Allen B W, et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science, 2016, 352(6283): 366-370.
doi: 10.1126/science.aad9272 pmid: 27081073
[14]   Jin W Y, Tamzalit F, Chaudhuri P K, et al. T cell activation and immune synapse organization respond to the microscale mechanics of structured surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(40): 19835-19840.
[15]   Villarreal-Leal R A, Healey G D, Corradetti B. Biomimetic immunomodulation strategies for effective tissue repair and restoration. Advanced Drug Delivery Reviews, 2021, 179: 113913.
doi: 10.1016/j.addr.2021.113913
[16]   He J H, Chen G B, Liu M Y, et al. Scaffold strategies for modulating immune microenvironment during bone regeneration. Materials Science and Engineering C, Materials for Biological Applications, 2020, 108: 110411.
doi: 10.1016/j.msec.2019.110411
[17]   Ladewig J, Koch P, Brüstle O. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nature Reviews Molecular Cell Biology, 2013, 14(4): 225-236.
doi: 10.1038/nrm3543 pmid: 23486282
[18]   Niu Y M, Wang Z Z, Shi Y C, et al. Modulating macrophage activities to promote endogenous bone regeneration: biological mechanisms and engineering approaches. Bioactive Materials, 2021, 6(1): 244-261.
doi: 10.1016/j.bioactmat.2020.08.012 pmid: 32913932
[19]   Natarajan D, Ye Z T, Wang L P, et al. Rare earth smart nanomaterials for bone tissue engineering and implantology: advances, challenges, and prospects. Bioengineering & Translational Medicine, 2022, 7(1): e10262.
[20]   Smith T D, Nagalla R R, Chen E Y, et al. Harnessing macrophage plasticity for tissue regeneration. Advanced Drug Delivery Reviews, 2017, 114: 193-205.
doi: S0169-409X(17)30047-9 pmid: 28449872
[21]   Wu R X, Yin Y, He X T, et al. Engineering a cell home for stem cell homing and accommodation. Advanced Biosystems, 2017, 1(4): 1700004.
doi: 10.1002/adbi.201700004
[22]   Hasani-Sadrabadi M M, Sarrion P, Nakatsuka N, et al. Hierarchically patterned polydopamine-containing membranes for periodontal tissue engineering. ACS Nano, 2019, 13(4): 3830-3838.
doi: 10.1021/acsnano.8b09623 pmid: 30895772
[23]   He X T, Li X, Xia Y, et al. Building capacity for macrophage modulation and stem cell recruitment in high-stiffness hydrogels for complex periodontal regeneration: experimental studies in vitro and in rats. Acta Biomaterialia, 2019, 88: 162-180.
doi: 10.1016/j.actbio.2019.02.004
[24]   Zhang X F, Chen Q P, Mao X L. Magnesium enhances osteogenesis of BMSCs by tuning osteoimmunomodulation. BioMed Research International, 2019, 2019: 7908205.
[25]   Davis R, Urbanowski R A, Gaharwar A K. 2D layered nanomaterials for therapeutics delivery. Current Opinion in Biomedical Engineering, 2021, 20: 100319.
doi: 10.1016/j.cobme.2021.100319
[26]   Dawson J I, Oreffo R O C. Clay: new opportunities for tissue regeneration and biomaterial design. Advanced Materials, 2013, 25(30): 4069-4086.
doi: 10.1002/adma.201301034
[27]   Dávila J L, d’Ávila M A. Laponite as a rheology modifier of alginate solutions: physical gelation and aging evolution. Carbohydrate Polymers, 2017, 157: 1-8.
doi: S0144-8617(16)31111-0 pmid: 27987800
[28]   Jatav S, Joshi Y M. Chemical stability of laponite in aqueous media. Applied Clay Science, 2014, 97-98: 72-77.
[29]   Mongondry P, Tassin J F, Nicolai T. Revised state diagram of laponite dispersions. Journal of Colloid and Interface Science, 2005, 283(2): 397-405.
pmid: 15721911
[30]   Ruzicka B, Zaccarelli E. A fresh look at the laponite phase diagram. Soft Matter, 2011, 7(4): 1268-1286.
doi: 10.1039/c0sm00590h
[31]   Shahin A, Joshi Y M. Physicochemical effects in aging aqueous laponite suspensions. Langmuir, 2012, 28(44): 15674-15686.
doi: 10.1021/la302544y pmid: 23057660
[32]   Jabbari-Farouji S, Tanaka H, Wegdam G H, et al. Multiple nonergodic disordered states in laponite suspensions: a phase diagram. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2008, 78(<W>6 pt 1): 061405.
[33]   Zreiqat H, Howlett C R, Zannettino A, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. Journal of Biomedical Materials Research, 2002, 62(2): 175-184.
pmid: 12209937
[34]   Valentin-Ranc C, Carlier M F. Role of ATP-bound divalent metal ion in the conformation and function of actin. Comparison of Mg-ATP, Ca-ATP, and metal ion-free ATP-actin. Journal of Biological Chemistry, 1991, 266(12): 7668-7675.
pmid: 2019592
[35]   Liu L, Liu Y Q, Feng C, et al. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis. Biomaterials, 2019, 192: 523-536.
doi: S0142-9612(18)30784-1 pmid: 30529871
[36]   Zhang F, Phiel C J, Spece L, et al. Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium: evidence for autoregulation of GSK-3. Journal of Biological Chemistry, 2003, 278(35): 33067-33077.
doi: 10.1074/jbc.M212635200 pmid: 12796505
[37]   Clevers H. Wnt/β-catenin signaling in development and disease. Cell, 2006, 127(3): 469-480.
doi: 10.1016/j.cell.2006.10.018 pmid: 17081971
[38]   Mousa M, Milan J A, Kelly O, et al. The role of lithium in the osteogenic bioactivity of clay nanoparticles. Biomaterials Science, 2021, 9(8): 3150-3161.
doi: 10.1039/d0bm01444c pmid: 33730142
[39]   Hoppe A, Güldal N S, Boccaccini A R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 2011, 32(11): 2757-2774.
doi: 10.1016/j.biomaterials.2011.01.004 pmid: 21292319
[40]   Reffitt D M, Ogston N, Jugdaohsingh R, et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone, 2003, 32(2): 127-135.
doi: 10.1016/s8756-3282(02)00950-x pmid: 12633784
[41]   Jankau J, Błažyńska-Spychalska A, Kubiak K, et al. Bacterial cellulose properties fulfilling requirements for a biomaterial of choice in reconstructive surgery and wound healing. Frontiers in Bioengineering and Biotechnology, 2022, 9: 805053.
[42]   Ghadiri M, Chrzanowski W, Rohanizadeh R. Antibiotic eluting clay mineral (Laponite®) for wound healing application: an in vitro study. Journal of Materials Science: Materials in Medicine, 2014, 25(11): 2513-2526.
doi: 10.1007/s10856-014-5272-7 pmid: 25027303
[43]   Dai Z B, Zhang Y H, Chen C, et al. An antifouling and antimicrobial zwitterionic nanocomposite hydrogel dressing for enhanced wound healing. ACS Biomaterials Science & Engineering, 2021, 7(4): 1621-1630.
[44]   Lin X J, Li Y M, Luo W, et al. Leucine-activated nanohybrid biofilm for skin regeneration via improving cell affinity and neovascularization capacity. Journal of Materials Chemistry B, 2020, 8(35): 7966-7976.
doi: 10.1039/d0tb00958j pmid: 32756660
[45]   Ji J Y, Ren D Y, Weng Y Z. Efficiency of multifunctional antibacterial hydrogels for chronic wound healing in diabetes: a comprehensive review. International Journal of Nanomedicine, 2022, 17: 3163-3176.
doi: 10.2147/IJN.S363827
[46]   Huang J T, Chang L C, Cheng C S, et al. Cytotoxicity produced by silicate nanoplatelets: study of cell death mechanisms. Toxins, 2020, 12(10): 623.
doi: 10.3390/toxins12100623
[47]   Ghadiri M, Chrzanowski W, Lee W H, et al. Layered silicate clay functionalized with amino acids: wound healing application. RSC Advances, 2014, 4(67): 35332-35343.
doi: 10.1039/C4RA05216A
[48]   Koehler J, Brandl F P, Goepferich A M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal, 2018, 100: 1-11.
doi: 10.1016/j.eurpolymj.2017.12.046
[49]   Golafshan N, Rezahasani R, Esfahani M T, et al. Nanohybrid hydrogels of laponite: PVA-Alginate as a potential wound healing material. Carbohydrate Polymers, 2017, 176: 392-401.
doi: S0144-8617(17)30946-3 pmid: 28927623
[50]   Huang K T, Fang Y L, Hsieh P S, et al. Zwitterionic nanocomposite hydrogels as effective wound dressings. Journal of Materials Chemistry B, 2016, 4(23): 4206-4215.
doi: 10.1039/C6TB00302H
[51]   Tomás H, Alves C S, Rodrigues J. Laponite ® : a key nanoplatform for biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 2018, 14(7): 2407-2420.
[52]   Gaharwar A K, Mihaila S M, Swami A, et al. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Advanced Materials, 2013, 25(24): 3329-3336.
doi: 10.1002/adma.201300584
[53]   Mihaila S M, Gaharwar A K, Reis R L, et al. The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials, 2014, 35(33): 9087-9099.
doi: 10.1016/j.biomaterials.2014.07.052 pmid: 25123923
[54]   Li T, Liu Z L, Xiao M, et al. Impact of bone marrow mesenchymal stem cell immunomodulation on the osteogenic effects of laponite. Stem Cell Research & Therapy, 2018, 9(1): 100.
[55]   Wang C S, Wang S G, Li K, et al. Preparation of laponite bioceramics for potential bone tissue engineering applications. PLoS One, 2014, 9(6): e99585.
doi: 10.1371/journal.pone.0099585
[56]   Cidonio G, Alcala-Orozco C R, Lim K S, et al. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite laponite-gelatin bioinks. Biofabrication, 2019, 11(3): 035027.
doi: 10.1088/1758-5090/ab19fd
[57]   Zandi N, Sani E S, Mostafavi E, et al. Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications. Biomaterials, 2021, 267: 120476.
doi: 10.1016/j.biomaterials.2020.120476
[58]   Dong L L, Bu Z H, Xiong Y Z, et al. Facile extrusion 3D printing of gelatine methacrylate/laponite nanocomposite hydrogel with high concentration nanoclay for bone tissue regeneration. International Journal of Biological Macromolecules, 2021, 188: 72-81.
doi: 10.1016/j.ijbiomac.2021.07.199 pmid: 34364938
[59]   Chen T Y, Ou S F, Chien H W. Biomimetic mineralization of tannic acid-supplemented HEMA/SBMA nanocomposite hydrogels. Polymers, 2021, 13(11): 1697.
doi: 10.3390/polym13111697
[60]   Cidonio G, Cooke M, Glinka M, et al. Printing bone in a gel: using nanocomposite bioink to print functionalised bone scaffolds. Materials Today Bio, 2019, 4: 100028.
doi: 10.1016/j.mtbio.2019.100028
[61]   Zhai X Y, Ruan C S, Ma Y F, et al. 3D-bioprinted osteoblast-laden nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both in vitro and in vivo. Advanced Science, 2018, 5(3): 1700550.
doi: 10.1002/advs.201700550
[62]   Xu X C, Zhuo J, Xiao L, et al. Nanosilicate-functionalized polycaprolactone orchestrates osteogenesis and osteoblast-induced multicellular interactions for potential endogenous vascularized bone regeneration. Macromolecular Bioscience, 2022, 22(2): e2100265.
[63]   Xu X C, Xiao L, Xu Y M, et al. Vascularized bone regeneration accelerated by 3D-printed nanosilicate-functionalized polycaprolactone scaffold. Regenerative Biomaterials, 2021, 8(6): rbab061.
doi: 10.1093/rb/rbab061
[64]   Zheng X, Zhang X R, Wang Y T, et al. Hypoxia-mimicking 3D bioglass-nanoclay scaffolds promote endogenous bone regeneration. Bioactive Materials, 2021, 6(10): 3485-3495.
doi: 10.1016/j.bioactmat.2021.03.011 pmid: 33817422
[65]   Zhang Y H, Chen M J, Dai Z B, et al. Sustained protein therapeutics enabled by self-healing nanocomposite hydrogels for non-invasive bone regeneration. Biomaterials Science, 2020, 8(2): 682-693.
doi: 10.1039/c9bm01455a pmid: 31776523
[66]   O’Shea D G, Curtin C M, O’Brien F J. Articulation inspired by nature: a review of biomimetic and biologically active 3D printed scaffolds for cartilage tissue engineering. Biomaterials Science, 2022, 10(10): 2462-2483.
doi: 10.1039/D1BM01540K
[67]   Thakur A, Jaiswal M K, Peak C W, et al. Injectable shear-thinning nanoengineered hydrogels for stem cell delivery. Nanoscale, 2016, 8(24): 12362-12372.
doi: 10.1039/c6nr02299e pmid: 27270567
[68]   Boyer C, Figueiredo L, Pace R, et al. Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomaterialia, 2018, 65: 112-122.
doi: S1742-7061(17)30711-0 pmid: 29128532
[69]   Zhang W, Zhang Y N, Zhang A N, et al. Enzymatically crosslinked silk-nanosilicate reinforced hydrogel with dual-lineage bioactivity for osteochondral tissue engineering. Materials Science and Engineering C, Materials for Biological Applications, 2021, 127: 112215.
doi: 10.1016/j.msec.2021.112215
[70]   Nojoomi A, Tamjid E, Simchi A, et al. Injectable polyethylene glycol-laponite composite hydrogels as articular cartilage scaffolds with superior mechanical and rheological properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66(3): 105-114.
doi: 10.1080/00914037.2016.1182914
[71]   Wu C J, Gaharwar A K, Chan B K, et al. Mechanically tough pluronic F127/laponite nanocomposite hydrogels from covalently and physically cross-linked networks. Macromolecules, 2011, 44(20): 8215-8224.
doi: 10.1021/ma200562k
[72]   Kilian D, Cometta S, Bernhardt A, et al. Core-shell bioprinting as a strategy to apply differentiation factors in a spatially defined manner inside osteochondral tissue substitutes. Biofabrication, 2022, 14(6): 014108.
doi: 10.1088/1758-5090/ac457b
[73]   陈羽浓, 苏俭生. 层状纳米颗粒Laponite对成牙本质细胞矿化促进作用的研究. 牙体牙髓牙周病学杂志, 2018, 28(9): 497-503.
[73]   Chen Y N, Su J S. Experimental study on the biomineralization of odontoblast-lineage cells promoted by the nanoplatelet laponite. Chinese Journal of Conservative Dentistry, 2018, 28(9): 497-503.
[74]   Zhang R T, Xie L, Wu H, et al. Alginate/Laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomaterialia, 2020, 113: 305-316.
doi: S1742-7061(20)30397-4 pmid: 32663663
[75]   Shang L L, Liu Z Q, Ma B J, et al. Dimethyloxallyl glycine/nanosilicates-loaded osteogenic/angiogenic difunctional fibrous structure for functional periodontal tissue regeneration. Bioactive Materials, 2021, 6(4): 1175-1188.
doi: 10.1016/j.bioactmat.2020.10.010 pmid: 33163699
[76]   Liu Z Q, Shang L L, Ge S H. Immunomodulatory effect of dimethyloxallyl glycine/nanosilicates-loaded fibrous structure on periodontal bone remodeling. Journal of Dental Sciences, 2021, 16(3): 937-947.
doi: 10.1016/j.jds.2020.10.008
[1] YANG Zhe,CHEN Qi,GUO Wei,WANG Jing,ZHANG Yi-ping,LU Shan,YU Zhen-hang,SHEN Jian-zhong. Organization, Implementation and Thinking of the Key Projects of ‘Stem Cell and Transformation Research’ in China[J]. China Biotechnology, 2022, 42(9): 116-123.
[2] LAI Shuang,LIU Chang,LIU Chun-hui,LIU Cong,REN Xiao-hua,MU Yan-dong. Osteogenic Properties of Dental-derived Stem Cell Composite with Grooved Porous Hydroxyapatite Scaffolds[J]. China Biotechnology, 2022, 42(8): 13-20.
[3] ZHENG Ying,DENG Shi-bi,CHEN Fang. The Development Trend of Stem Cell Technology and Regenerative Medicine[J]. China Biotechnology, 2022, 42(4): 111-119.
[4] DENG Jia-qiang, LI Wei-yao, ZHONG Li-jun, YU Shu-min. Research Progress on the Relationship Between Autophagy and Mesenchymal Stem Cell Senescence[J]. China Biotechnology, 2022, 42(3): 55-61.
[5] QIAN Yu,DING Xiao-yu,LIU Zhi-qiang,YUAN Zeng-qiang. An Efficient Monoclonal Establishment Method of Genetically Modified Human Pluripotent Stem Cells[J]. China Biotechnology, 2021, 41(8): 33-41.
[6] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[7] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[8] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[9] CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus[J]. China Biotechnology, 2020, 40(7): 59-69.
[10] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[11] YUAN Ya-kun,LIU Guang-yang,LIU Yong-jun,XIE Ya-fang,WU Hao. Comparison of Research and Clinical Transformation on Mesenchymal Stem Cells between China and the US[J]. China Biotechnology, 2020, 40(4): 97-107.
[12] YANG Dan,TIAN Hai-shan,LI Xiao-kun. Research Progress of Fibroblast Growth Factor 5[J]. China Biotechnology, 2020, 40(3): 117-124.
[13] CHEN Li-jun,QU Jing-jing,XIANG Charlie. Therapeutic Potentials, Clinical Studies, and Application Prospects of Mesenchymal Stem Cells in 2019 Novel Coronavirus (COVID-19)[J]. China Biotechnology, 2020, 40(11): 43-55.
[14] QIU Dan-dan,LU Cai-xia,DAI Jie-jie. Application of Hepatocyte-like Cells Derived from Induced Pluripotent Stem Cells in HCV Infection Model[J]. China Biotechnology, 2020, 40(11): 67-72.
[15] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.