Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (10): 60-69    DOI: 10.13523/j.cb.2206043
    
Insight into the Purification Strategies for Removing the Byproducts of Bispecific Antibodies
Qian LI,Xiao-ying LIANG,Guo-zhu LI,Qing-quan HE,Huang-hong TAN,Zi-chen WANG,Guang-liu XU,jing LI,Meng-ni FAN,Dan XU**()
Nanjing China Tai Tianqing Pharmaceutical Co., Ltd, Fanghua Pharmaceutical Research Institute, Department of Biology, Nanjing 210046, China
Download: HTML   PDF(2054KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Bispecific antibodies can simultaneously bind to two targets. Compared with monospecific antibodies, they have the advantages of high efficacy and less toxic and side effects, so they have become a research hotspot in recent years.However, since bispecific antibodies are composed of different heavy chains and light chains, and the expression of heavy and light chains is difficult to control at the same level, it is very easy to form by-products, which greatly increase the difficulty and cost of downstream purification.In recent years, several pharmaceutical companies have developed bispecific antibody preparation platforms, which have greatly improved the success rate of bispecific antibody assembly.However, various double-antibody molecular design strategies are not enough to completely prevent the production of by-products, so various chromatographic methods are needed to further remove the by-products of double-antibody molecules to improve product quality.This paper reviews several mainstream bispecific antibody design platforms in recent years, and systematically summarizes the chromatographic methods for removing homodimers, half antibodies and 3/4 antibodies and aggregates. The comprehensive information should be helpful to provide a theoretical basis for bispecific antibody purification.



Key wordsBispecific antibody      By-products      Molecular design strategies      Chromatography     
Received: 23 June 2022      Published: 04 November 2022
ZTFLH:  Q51  
Corresponding Authors: Dan XU     E-mail: 1563225340@qq.com
Cite this article:

Qian LI,Xiao-ying LIANG,Guo-zhu LI,Qing-quan HE,Huang-hong TAN,Zi-chen WANG,Guang-liu XU,jing LI,Meng-ni FAN,Dan XU. Insight into the Purification Strategies for Removing the Byproducts of Bispecific Antibodies. China Biotechnology, 2022, 42(10): 60-69.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2206043     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I10/60

Fig.1 Schematic illustration of bsAb of different structural types
双抗开发平台 开发公司 分子设计策略 参考文献
KiH Genentech “杵-臼”结构 [13]
DuetMab AstraZeneca “杵-臼”结构+工程化二硫键 [20]
CrossMab Roche Fab轻重链(HC/LC)互换 [14]
ART-Ig Chugai 静电转向突变 [21]
Biclonics Merus 静电转向突变 [22]
BEAT Glenmark CH3界面交换+ScFv(单链可变片段)替换 [23]
WuXiBody WuXiBioligics CH1/CL区域替换+“杵-臼”结构 [25]
ALiCE Y-Biologics Fc区域替换 [26]
Table 1 Characteristic information of different bsAb platforms
Fig.2 Schematic illustration of different bsAb platform
Fig.3 Schematic representation of homodimer of several different bsAb
Fig.4 Schematic of half and 3/4 antibodies
Fig.5 Schematic of aggragates
副产物类型 层析方式 层析填料 参考文献
同源二聚体 Protein A 亲和层析+疏水性调节 POROS MabCapture A [28]
Kappa轻链亲和层析+pH梯度洗脱 KappaSelect affinity resin [29]
Protein L 亲和层析+ pH梯度洗脱 Capto L [30]
Kappa、Lambda轻链亲和层析 KappaSelect+LambdaFabSelect [17]
离子交换+pH梯度洗脱 Mono S/ Mono Q [31]
混合作用模式层析 Capto MMC ImpRes [33]
混合作用模式层析+盐梯度 Toyopearl MX-Trp 650M [35]
半抗体/3/4抗体 Protein A 亲和层析+疏水性调节 MabSelectSuRe LX [37]
Protein L 亲和层析+ pH梯度洗脱 Capto L [38]
Kappa轻链亲和层析(流穿模式) KappaSelect affinity resin [23]
阳离子交换层析+pH梯度洗脱 POROS®50HS [39]
混合作用模式层析 Capto MMC ImpRes [40]
混合作用模式层析+混合梯度 Capto MMC ImpRes [41]
羟基磷灰石层析+盐梯度洗脱 [42]
聚集体 Protein A 亲和层析+疏水性调节 MabSelectSuReTM LX [44]
Protein L亲和层析+洗脱条件调节 Capto L [43]
Protein L亲和层析+疏水性调节 Protein L [44]
疏水层析+盐梯度洗脱 Phenyl Sepharose HP、Capto Phenyl ImpRes [45]
阳离子层析 SP SepharoseTM High Performance [47]
混合作用模式层析 Capto MMC ImpRes [40]
Table 2 Summary for the chromatographic methods of removing by-products of bispecific antibodies
[1]   Lim S M, Pyo K H, Soo R A, et al. The promise of bispecific antibodies: clinical applications and challenges. Cancer Treatment Reviews, 2021, 99: 102240.
doi: 10.1016/j.ctrv.2021.102240
[2]   Moek K L, de Groot D J A, de Vries E G E, et al. The antibody-drug conjugate target landscape across a broad range of tumour types. Annals of Oncology, 2017, 28(12): 3083-3091.
doi: 10.1093/annonc/mdx541 pmid: 29045509
[3]   Gera N. The evolution of bispecific antibodies. Expert Opinion on Biological Therapy, 2022, 22(8): 945-949.
doi: 10.1080/14712598.2022.2040987
[4]   Esfandiari A, Cassidy S, Webster R M. Bispecific antibodies in oncology. Nature Reviews Drug Discovery, 2022, 21(6): 411-412.
doi: 10.1038/d41573-022-00040-2 pmid: 35246638
[5]   Linke R, Klein A, Seimetz D. Catumaxomab. mAbs, 2010, 2(2): 129-136.
doi: 10.4161/mabs.2.2.11221 pmid: 20190561
[6]   Kantarjian H, Stein A, Gökbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. The New England Journal of Medicine, 2017, 376(9): 836-847.
doi: 10.1056/NEJMoa1609783 pmid: 28249141
[7]   Scott L J, Kim E S. Emicizumab-kxwh: first global approval. Drugs, 2018, 78(2): 269-274.
doi: 10.1007/s40265-018-0861-2 pmid: 29357074
[8]   Davda J, Declerck P, Hu-Lieskovan S, et al. Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. Journal for Immunotherapy of Cancer, 2019, 7(1): 105.
doi: 10.1186/s40425-019-0586-0 pmid: 30992085
[9]   Zarrineh M, Mashhadi I S, Farhadpour M, et al. Mechanism of antibodies purification by protein A. Analytical Biochemistry, 2020, 609: 113909.
doi: 10.1016/j.ab.2020.113909
[10]   Chen S W, Zhang W. Current trends and challenges in the downstream purification of bispecific antibodies. Antibody Therapeutics, 2021, 4(2): 73-88.
doi: 10.1093/abt/tbab007 pmid: 34056544
[11]   Li Y F. A brief introduction of IgG-like bispecific antibody purification: methods for removing product-related impurities. Protein Expression and Purification, 2019, 155: 112-119.
doi: S1046-5928(18)30607-7 pmid: 30513344
[12]   Li Y F. Immunoglobulin-binding protein-based affinity chromatography in bispecific antibody purification: functions beyond product capture. Protein Expression and Purification, 2021, 188: 105976.
doi: 10.1016/j.pep.2021.105976
[13]   Ridgway J B B, Presta L G, Carter P. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Engineering, Design and Selection, 1996, 9(7): 617-621.
doi: 10.1093/protein/9.7.617
[14]   Schaefer W, Regula J T, Bähner M, et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(27): 11187-11192.
[15]   Brinkmann U, Kontermann R E. The making of bispecific antibodies. mAbs, 2017, 9(2): 182-212.
doi: 10.1080/19420862.2016.1268307 pmid: 28071970
[16]   Sampei Z, Igawa T, Soeda T, et al. Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PLoS One, 2013, 8(2): e57479.
doi: 10.1371/journal.pone.0057479
[17]   Fischer N, Elson G, Magistrelli G, et al. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nature Communications, 2015, 6: 6113.
doi: 10.1038/ncomms7113 pmid: 25672245
[18]   Wranik B J, Christensen E L, Schaefer G, et al. LUZ-Y, a novel platform for the mammalian cell production of full-length IgG-bispecific antibodies. Journal of Biological Chemistry, 2012, 287(52): 43331-43339.
doi: 10.1074/jbc.M112.397869 pmid: 23118228
[20]   Li Y F. IgG-like bispecific antibody platforms with built-in purification-facilitating elements. Protein Expression and Purification, 2021, 188: 105955.
doi: 10.1016/j.pep.2021.105955
[20]   Wang C L, Vemulapalli B, Cao M Y, et al. A systematic approach for analysis and characterization of mispairing in bispecific antibodies with asymmetric architecture. mAbs, 2018, 10(8): 1226-1235.
doi: 10.1080/19420862.2018.1511198 pmid: 30153083
[21]   Shiraiwa H, Narita A, Kamata-Sakurai M, et al. Engineering a bispecific antibody with a common light chain: identification and optimization of an anti-CD3 Epsilon and anti-GPC3 bispecific antibody, ERY974. Methods, 2019, 154: 10-20.
doi: S1046-2023(18)30096-3 pmid: 30326272
[22]   de Nardis C, Hendriks L J A, Poirier E, et al. A new approach for generating bispecific antibodies based on a common light chain format and the stable architecture of human immunoglobulin G1. Journal of Biological Chemistry, 2017, 292(35): 14706-14717.
doi: 10.1074/jbc.M117.793497 pmid: 28655766
[23]   Moretti P, Skegro D, Ollier R, et al. BEAT® the bispecific challenge: a novel and efficient platform for the expression of bispecific IgGs. BMC Proceedings, 2013, 7(S6): 9.
[24]   Skegro D, Stutz C, Ollier R, et al. Immunoglobulin domain interface exchange as a platform technology for the generation of Fc heterodimers and bispecific antibodies. Journal of Biological Chemistry, 2017, 292(23): 9745-9759.
doi: 10.1074/jbc.M117.782433 pmid: 28450393
[25]   Dietrich S, Gross A W, Becker S, et al. Constant domain-exchanged Fab enables specific light chain pairing in heterodimeric bispecific SEED-antibodies. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2020, 1868(1): 140250.
doi: 10.1016/j.bbapap.2019.07.003
[26]   Jang S, Song J, Kim N, et al. Development of an antibody-like T-cell engager based on VH-VL heterodimer formation and its application in cancer therapy. Biomaterials, 2021, 271: 120760.
doi: 10.1016/j.biomaterials.2021.120760
[27]   Steven M. Chamow P P, Pratap L A. Capture of CH1-containing bispecific antibodies. BioProcess International, 2020, 18(5):130-144.
[28]   Tustian A D, Endicott C, Adams B, et al. Development of purification processes for fully human bispecific antibodies based upon modification of protein A binding avidity. mAbs, 2016, 8(4): 828-838.
doi: 10.1080/19420862.2016.1160192 pmid: 26963837
[29]   Qin T T, Wang Y, Li Y F. Separating antibody species containing one and two kappa light chain constant region by KappaSelect affinity chromatography. Protein Expression and Purification, 2020, 171: 105618.
doi: 10.1016/j.pep.2020.105618
[30]   Chen X J, Wang Y, Wang Y, et al. Protein L chromatography: a useful tool for monitoring/separating homodimers during the purification of IgG-like asymmetric bispecific antibodies. Protein Expression and Purification, 2020, 175: 105711.
doi: 10.1016/j.pep.2020.105711
[31]   Sharkey B, Pudi S, Wallace Moyer I, et al. Purification of common light chain IgG-like bispecific antibodies using highly linear pH gradients. mAbs, 2017, 9(2): 257-268.
doi: 10.1080/19420862.2016.1267090 pmid: 27937066
[32]   Zhang L, Parasnavis S, Li Z J, et al. Mechanistic modeling based process development for monoclonal antibody monomer-aggregate separations in multimodal cation exchange chromatography. Journal of Chromatography A, 2019, 1602: 317-325.
doi: S0021-9673(19)30580-1 pmid: 31248584
[33]   Tang J Q, Zhang X D, Chen T, et al. Removal of half antibody, hole-hole homodimer and aggregates during bispecific antibody purification using MMC ImpRes mixed-mode chromatography. Protein Expression and Purification, 2020, 167: 105529.
doi: 10.1016/j.pep.2019.105529
[34]   Zhang Y, Cai L L, Wang Y, et al. Processing of high-salt-containing protein A eluate using mixed-mode chromatography in purifying an aggregation-prone antibody. Protein Expression and Purification, 2019, 164: 105458.
doi: 10.1016/j.pep.2019.105458
[35]   Nicolas F, Franois D J, Keith W, et al. methods of purifying bispecific antibodies:EPO,EP3268390A1.2018-01-17[2018-01-17]. https://wenku.baidu.com/view/47f290b8de3383c4bb4cf7ec4afe04a1b071b0f6?fr=xueshu.
[36]   Qian G. Purification of monoclonal antibodies:USA,WO2011005818A1.2011-01-13[2011-01-13]. https://wenku.baidu.com/view/06a03656f142336c1eb91a37f111f18583d00cfc.html?fr=income2-wk_app_search_ctrX-search.
[37]   Chen X J, Wang Y, Li Y F. Removing half antibody byproduct by protein A chromatography during the purification of a bispecific antibody. Protein Expression and Purification, 2020, 172: 105635.
doi: 10.1016/j.pep.2020.105635
[38]   Wang Y, Chen X J, Wang Y, et al. Removing a difficult-to-separate byproduct by Capto L affinity chromatography during the purification of a WuXiBody-based bispecific antibody. Protein Expression and Purification, 2020, 175: 105713.
doi: 10.1016/j.pep.2020.105713
[39]   Kluters S, Hafner M, von Hirschheydt T, et al. Solvent modulated linear pH gradient elution for the purification of conventional and bispecific antibodies: Modeling and application. Journal of Chromatography A, 2015, 1418: 119-129.
doi: S0021-9673(15)01359-X pmid: 26431858
[40]   Wan Y, Zhang T, Wang Y M, et al. Removing light chain-missing byproducts and aggregates by Capto MMC ImpRes mixed-mode chromatography during the purification of two WuXiBody-based bispecific antibodies. Protein Expression and Purification, 2020, 175: 105712.
[41]   Wan Y, Wang Y M, Zhang T, et al. Application of pH-salt dual gradient elution in purifying a WuXiBody-based bispecific antibody by MMC ImpRes mixed-mode chromatography. Protein Expression and Purification, 2021, 181: 105822.
doi: 10.1016/j.pep.2021.105822
[42]   Gagnon P. Improved antibody aggregate removal by hydroxyapatite chromatography in the presence of polyethylene glycol. Journal of Immunological Methods, 2008, 336(2): 222-228.
doi: 10.1016/j.jim.2008.05.002 pmid: 18571666
[43]   Wang Y, Chen X J, Wang Y, et al. Impact of salt concentration in mobile phase on antibody retention in Protein A, Protein L and KappaSelect affinity chromatography. Protein Expression and Purification, 2021, 178: 105786.
doi: 10.1016/j.pep.2020.105786
[44]   Chen S W, Tan D, Yang Y S, et al. Investigation of the effect of salt additives in protein L affinity chromatography for the purification of tandem single-chain variable fragment bispecific antibodies. mAbs, 2020, 12(1): 1718440.
[45]   Hall T, Kelly G M, Emery W R. Use of mobile phase additives for the elution of bispecific and monoclonal antibodies from phenyl based hydrophobic interaction chromatography resins. Journal of Chromatography B, 2018, 1096: 20-30.
doi: S1570-0232(18)30943-7 pmid: 30130673
[46]   Wollacott R B, Casaz P L, Morin T J, et al. Analytical characterization of a monoclonal antibody therapeutic reveals a three-light chain species that is efficiently removed using hydrophobic interaction chromatography. mAbs, 2013, 5(6): 925-935.
doi: 10.4161/mabs.26192 pmid: 23995619
[47]   Hall T, Wilson J J, Brownlee T J, et al. Alkaline cation-exchange chromatography for the reduction of aggregate and a mis-formed disulfide variant in a bispecific antibody purification process. Journal of Chromatography B, 2015, 975: 1-8.
doi: 10.1016/j.jchromb.2014.11.002 pmid: 25462105
[48]   Ishihara T, Miyahara M, Yamamoto K. Monoclonal antibody purification using activated carbon as a replacement for protein A affinity chromatography. Journal of Chromatography B, 2018, 1102-1103: 1-7.
[1] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[2] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[3] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[4] ZHANG Sai,XIANG Le,LI Lin-hai,LI Hui-jun,WANG Gang,QIAN Chun-gen. Development and Performance Evaluation of A Rapid IgM-IgG Combined Antibody Test for 2019 Novel Coronavirus Infection[J]. China Biotechnology, 2020, 40(8): 1-9.
[5] YANG Xiao-ying,LI Meng,ZHAO Wei,TANG Min,ZHANG Zhi-qian. Preparation and Preliminary Characterization of Anti-α2δ1/CD3 Bispecific Antibody[J]. China Biotechnology, 2020, 40(7): 9-14.
[6] QIN Xu-ying,YANG Hong-jiang. Research Progress on Techniques for Separation, Purification of Bacteriophages[J]. China Biotechnology, 2020, 40(5): 78-83.
[7] WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker[J]. China Biotechnology, 2020, 40(4): 34-41.
[8] Yan GAO,Jing-jing DU,Bin WANG,Qi LIU,Zhi-qiang SHEN. Study on β-Propiolactone in Inactivation Process of Rabies Vaccine by Gas Chromatography[J]. China Biotechnology, 2019, 39(6): 25-31.
[9] Da-wei FU,Ying-ying SUN,wei XU. Efficient Heterologous Expression, Purification and Activity Analysis of Fusion Protein NusA-hRI[J]. China Biotechnology, 2019, 39(3): 21-28.
[10] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[11] Qing-meng LI,Sheng-tao LI,Ning WANG,Xiao-dong GAO. Expression, Purification and Activity Assay of Yeast α-1,2 Mannosyltransferase Alg11[J]. China Biotechnology, 2018, 38(6): 26-33.
[12] Wei ZHAO,Jing-da LI,Qing-ping LIU. The Development of Downstream Continuous Purification Technology of Recombinant Protein[J]. China Biotechnology, 2018, 38(10): 74-81.
[13] XIA Qi-yu, LI Mei-ying, YANG Xiao-liang, XIAO Su-sheng, HE Ping-ping, GUO An-ping. Immunochromatography Test Strip and Its Applications in Detection of Genetically Modified Organisms[J]. China Biotechnology, 2017, 37(2): 101-110.
[14] XUE Ling, LIU Jiang-ning, ZHANG Yao, ZHANG Chun, WANG Qi, QIN Chuan, LIU Yong-dong, SU Zhi-guo. Affinity Purification of Enterovirus 71 Fused Multi-Epitope Protein Antigen and Assembling It as Virus-like Particles in Vitro[J]. China Biotechnology, 2016, 36(7): 34-40.
[15] MENG Guo-ji, DENG Yi-xi, LI Le, LUO Hao-hui, YU Yu-gen. Promotion in ProteinA Chromatography of WLB303 Monoclonal Antibody by Using Dual Flowrate to Load Sample[J]. China Biotechnology, 2016, 36(6): 65-75.