Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (10): 9-20    DOI: 10.13523/j.cb.2205005
    
Cloning and Functional Analysis of WINDs gene in Populus euphratica
Si-jia HOU,Jing CHEN,Jian-qiao MENG,Jun-hong DU,Cong WANG,Dan LIANG,Rong-ling WU,Yun-qian GUO**()
College of Biological Science and Technology, Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
Download: HTML   PDF(5941KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: WIND (WOUND INDUCED DEDIFFERENTIATION) are important transcription factors belonging to ERF/AP2 (ETHYLENE RESPONSE FACTOR/ APETALA 2) family. The genes were first found to bind to ethylene response element GCC-BOX and dehydration response element DRE in Arabidopsis thaliana to respond to drought signals and regulate ethylene levels. Recent studies have found that WIND genes also play a key role in plant wound signal response, callus formation and adventitious shoot production. Previous studies have explored the mechanisms of the WIND gene controlling callus formation and adventitious shoot regeneration in Arabidopsis thaliana. However, the functions of WIND in woody plants remain unclear. The functions of WIND genes in wound signal response and adventitious shoot regeneration will be explored in Populus euphratica. A theoretical basis for solving the regeneration problem of P. euphratica at the molecular level will be provided. Methods: Gene cloning, qRT-PCR and transgenic phenotype analysis were used. Results: Two WIND genes of P.euphratica were cloned as PeWIND1 and PeWIND2, respectively. The coding regions were 1 050 bp and 1 032 bp, encoding 349 and 343 amino acids, respectively. Subcellular localization analysis showed that both genes were functional in the nucleus. Gene expression analysis showed that PeWIND1 and PeWIND2 expressed in roots, stems, leaves, and calli. The highest expression level was found in calli. The time course expression analysis showed that the expression levels of PeWIND1 and PeWIND2 were first increased and then decreased within 24 h after wound stimulation, and peaked at 1 h after wound stimulation. Phenotypic statistics of transgenic plants showed that the regeneration ability of adventitious shoots was enhanced after overexpression of PeWIND1 and PeWIND2. Conclusion: PeWIND1 and PeWIND2 responded to wound signal and the expression levels of PeWIND1 and PeWIND2 were first increased and then decreased within 24 h after wound stimulation. PeWIND1 and PeWIND2 promoted adventitious shoot regeneration from stems of poplars.



Key wordsPlant regeneration      Populus euphratica      PeWIND      Wound response     
Received: 04 May 2022      Published: 04 November 2022
ZTFLH:  Q812  
Corresponding Authors: Yun-qian GUO     E-mail: guoyunqian@bjfu.edu.cn
Cite this article:

Si-jia HOU,Jing CHEN,Jian-qiao MENG,Jun-hong DU,Cong WANG,Dan LIANG,Rong-ling WU,Yun-qian GUO. Cloning and Functional Analysis of WINDs gene in Populus euphratica. China Biotechnology, 2022, 42(10): 9-20.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2205005     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I10/9

引物名称 引物序列(5'-3')
PeWIND1 F: ATGGCAGCTACAATGGATCTCT
PeWIND1 R: AGATAAAATTGAAGCCCAAT
PeWIND2 F: ATGGATTTCCACAGTAGTAGACC
PeWIND2 R: AGATAAAATTGAAGCCCAAT
Table 1 Primer sequences used in PCR for amplifying target genes
引物名称 引物序列(5'-3')
PeWIND1 F: AGCTCGGTACCCGGGGATCCATGGCAGCTACAATGGATCTCTA
PeWIND1 R: TCTCCTTTGCCCATGTCGACAGATAAAATTGAAGCCCAATCAA
PeWIND2 F: AGCTCGGTACCCGGGGATCCATGGATTTCCACAGTAGTAGAC
PeWIND2 R: TCTCCTTTGCCCATGTCGACAGATAAAATTGAAGCCCAATCAA
Table 2 Primer sequences with BamHI and SalI restriction sites used in PCR for amplifying target genes
引物名称 序列(5'-3')
PeWIND1-qPCR F: AGGAGTAAGGCAAAGGCACTG
PeWIND1-qPCR R: TGGTGGCGTAGATTAGGGAAG
PeWIND2-qPCR F: ACTCTGGCTTGGCACATTCG
PeWIND2-qPCR R: TCTTTGCTTTCCCTCCTTGTTTCTG
PeACTIN-qPCR F: ACCCTCCAATCCAGACACTG
PeACTIN-qPCR R: TTGCTGACCGTATGAGCAAG
Table 3 Primer sequences used in qRT-PCR
Fig.1 Electropherograms of PeWIND1, PeWIND2 gene clones M:Marker
Fig.2 PeWIND gene maps (a) Comparison of PeWIND1 and NCBI prediction results (b)Comparison of PeWIND2 and NCBI prediction results
Fig.3 Comparison of amino acid sequence alignment of PeWIND with PtrRAP2-4、PalRAP2-13-like、PdeKAH8508800.1 and PtoKAG6774166.1
Fig.4 Protein domain prediction of PeWIND1, PeWIND2 (a) PeWIND1 (b) PeWIND2 AP2:AP2 superfamily
Fig.5 Three-dimensional structure prediction of PeWIND1, PeWIND2 proteins (a) PeWIND1 (b) PeWIND2
Fig.6 Phylogenetic analysis of PeWIND1, PeWIND2 proteins from different plant species In this paper, PeuRAP2-4-like was named PeWIND1, PeuRAP2-13 was named PeWIND2;Ach: Actinidia chinensis var. chinensis;Apr: Abrus precatorius;Ccl: Citrus clementina;Cil: Carya illinoinensis;Cpa: Carica papaya;Dzi: Durio zibethinus;Ghi: Gossypium hirsutum;Gar: Gossypium arboreum;Hbr: Hevea brasiliensis;Hum: Herrania umbratical;Jcu: Jatropha curcas;Jre: Juglans regia;Mes: Manihot esculenta;Mno: Morus notabilis;Mru: Morella rubra;Min: Mangifera indica;Pra: Prosopis alba;Pal: Populus alba;Peu: Populus euphratica;Pmu: Prunus mume;Ptr: Populus trichocarpa;Pde: Populus deltoides; Pto: Populus tomentosa; Pve: Pistacia vera;Qlo: Quercus lobata;Qsu: Quercus suber;Rco: Ricinus communis;Sto: Senna tora; Ssu: Spatholobus suberectus;Twi: Tripterygium wilfordii;Tca: Theobroma cacao;Tsp: Telopea speciosissim;Vra: Vigna radiata var. radiata;Vvi: Vitis vinifera;Vri: Vitis riparia
Fig.7 Laser confocal microscopy of transgenic Nicotiana benthamiana leaves Red is chloroplast autofluorescence, green is GFP signal. Scale bar, 25 μm
Fig.8 Tissue expression specificity of PeWIND gene in Populus euphratica was detected by qRT-PCR (a) PeWIND1 (b) PeWIND2 The figure shows the relative expression levels of PeWIND gene in Populus euphratica roots, stems, leaves and callus explants respectively (the relative expression levels are obtained by comparing PeWIND gene expression levels in roots)
Fig.9 Time expression specificity of PeWIND gene in Populus euphratica was detected by qRT-PCR (a)PeWIND1 (b)PeWIND2 The figure shows the relative expression levels of PeWIND1, PeWIND2 genes at 0, 15 min, 30 min, 1 h, 3 h, 6 h, 12 h and 24 h after wound treatment in Populus euphratica leaf explants (the relative expression levels are obtained by comparing the expression levels of each gene at 0)
Fig.10 Relative expression level of PeWIND gene in Populus euphratica was detected by qRT-PCR (a)PeWIND1 (b)PeWIND2 WT:wild type; W1-C: 35S∷PeWIND1-C strain; W1-21: 35S∷PeWIND1-21 strain; W2-26: 35S∷PeWIND2-26 strain; EW2-31: 35S∷ PeWIND2-31 strain
Fig.11 WIND promotes shoot regeneration in vitro (a)Adventitious shoot regeneration from stem explants of wild type, W1-C, W1-21, W2-26 and W2-31. Stem explants were cultured on SIM for 20 days. Representative images of stem explants cultured on SIM for 20 days. Bar = 5 mm (b)Quantitative analysis of regeneration phenotype of adventitious shoots. The regeneration phenotype was determined by the number of regeneration shoots per explant. There were 15 explants per genotype and three groups of biological replicates (n = 45 for each genotype). The T test was used to determine whether the difference was statistically significant (*** P<0.001)
[1]   李志军, 刘建平, 于军, 等. 胡杨、灰叶胡杨生物生态学特性调查. 西北植物学报, 2003, 23(7): 236-240.
[1]   Li Z J, Liu J P, Yu J, et al. Investigation on the characteristics of biology and ecology of Populus euphratica and Populus pruinosa. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(7): 236-240.
[2]   张平冬, 康向阳, 高鹏, 等. 胡杨离体培养分化增殖途径的比较研究. 北京林业大学学报, 2003, 25(6): 50-54.
[2]   Zhang P D, Kang X Y, Gao P, et al. Comparison of different proliferations of Populus euphratica under in vitro culture. Journal of Beijing Forestry University, 2003, 25(6): 50-54.
[3]   Parsons T J, Sinkar V P, Stettler R F, et al. Transformation of poplar by Agrobacterium tumefaciens. Bio/Technology, 1986, 4(6): 533-536.
[4]   Nilsson Q, Moritz T, Sundberg B, et al. Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiology, 1996, 112(2): 493-502.
pmid: 12226405
[5]   Li L G, Zhou Y H, Cheng X F, et al. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(8): 4939-4944.
[6]   Levée V, Major I, Levasseur C, et al. Expression profiling and functional analysis of Populus WRKY 23 reveals a regulatory role in defense. New Phytologist, 2009, 184(1): 48-70.
doi: 10.1111/j.1469-8137.2009.02955.x
[7]   金慧, 栾雨时. 转录因子在植物抗病基因工程中的研究进展. 中国生物工程杂志, 2010, 30(10): 94-99.
[7]   Jin H, Luan Y S. Progress on transcription factor in gene engineering of diseases resistances in plants. China Biotechnology, 2010, 30(10): 94-99.
[8]   Wang H Z, Xue Y X, Chen Y J, et al. Lignin modification improves the biofuel production potential in transgenic Populus tomentosa. Industrial Crops and Products, 2012, 37(1): 170-177.
doi: 10.1016/j.indcrop.2011.12.014
[9]   Han K H, Meilan R, Ma C, et al. An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus). Plant Cell Reports, 2000, 19(3): 315-320.
doi: 10.1007/s002990050019 pmid: 30754915
[10]   Ikeuchi M, Iwase A, Rymen B, et al. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiology, 2017, 175(3): 1158-1174.
doi: 10.1104/pp.17.01035 pmid: 28904073
[11]   Reymond P, Weber H, Damond M, et al. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. The Plant Cell, 2000, 12(5): 707-720.
doi: 10.1105/tpc.12.5.707
[12]   Ikeuchi M, Ogawa Y, Iwase A, et al. Plant regeneration: cellular origins and molecular mechanisms. Development (Cambridge, England), 2016, 143(9): 1442-1451.
doi: 10.1242/dev.134668
[13]   李俊, 范世航, 刘婧琳, 等. 外植体再生分子调控机理. 中国油料作物学报, 2021, 43(3): 376-382.
[13]   Li J, Fan S H, Liu J L, et al. Molecular regulatory mechanisms of explant regeneration. Chinese Journal of Oil Crop Sciences, 2021, 43(3): 376-382.
[14]   Skoog F, Miller C O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symposia of the Society for Experimental Biology, 1957, 11: 118-130.
[15]   Iwase A, Ohme-Takagi M, Sugimoto K. WIND1: a key molecular switch for plant cell dedifferentiation. Plant Signaling & Behavior, 2011, 6(12): 1943-1945.
[16]   Iwase A, Harashima H, Ikeuchi M, et al. WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. The Plant Cell, 2017, 29(1): 54-69.
doi: 10.1105/tpc.16.00623
[17]   李新宇. 水曲柳愈伤组织不定芽再生与FmWIND1基因克隆和表达研究. 哈尔滨: 东北林业大学, 2019.
[17]   Li X Y. A study on adventitious bud regeneration and FmWIND1 gene cloning and expression in callus of Fraxinus mandshurica. Harbin: Northeast Forestry University, 2019.
[18]   Zhou C, Guo J S, Feng Z H, et al. Molecular characterization of a novel AP 2 transcription factor ThWIND1-L from Thellungiella halophila. Plant Cell, Tissue and Organ Culture (PCTOC), 2012, 110(3): 423-433.
doi: 10.1007/s11240-012-0163-4
[19]   Regier N, Frey B. Experimental comparison of relative RT-qPCR quantification approaches for gene expression studies in poplar. BMC Molecular Biology, 2010, 11(1): 57.
doi: 10.1186/1471-2199-11-57
[20]   梁机, 陈晓阳, 林善枝, 等. 发根农杆菌Ri质粒rol基因研究进展及在林木改良上的应用. 植物学通报, 2002, 37(6): 650-658.
[20]   Liang J, Chen X Y, Lin S Z, et al. Advance of studies on Agrobacterium rhizogenes ri plasmid rol genes and their applications for forest tree genetic improvement. Chinese Bulletin of Botany, 2002, 37(6): 650-658.
[21]   陆万香, 李名扬, 裴炎, 等. 玉米几丁质酶基因导入甘蓝型油菜的研究. 西南农业大学学报, 2001, 23(2): 130-133.
[21]   Lu W X, Li M Y, Pei Y, et al. Incorporating maize chitinase into rapeseed (Brassica napus) by Agrobacterium tumefaciens. Journal of Southwest Agricultural University, 2001, 23(2): 130-133.
[22]   马智艳. 玉米内切β-1, 3-葡聚糖苷酶基因ZmEGP的克及功能分析. 郑州: 河南农业大学, 2015.
[22]   Ma Z Y. The cloning and functional analysis of glucan endo-β-1, 3-glucosidase gene ZmEGP in maize. Zhengzhou: Henan Agricultural University, 2015.
[23]   Iwase A, Mitsuda N, Koyama T, et al. The AP2/ERF transcription factor WIND 1 controls cell dedifferentiation in Arabidopsis. Current Biology, 2011, 21(6): 508-514.
doi: 10.1016/j.cub.2011.02.020
[24]   Ikeuchi M, Favero D S, Sakamoto Y, et al. Molecular mechanisms of plant regeneration. Annual Review of Plant Biology, 2019, 70: 377-406.
doi: 10.1146/annurev-arplant-050718-100434 pmid: 30786238
[25]   侯思佳, 张倩倩, 孙振美, 等. WIND转录因子在植物响应伤口胁迫和器官生长发育中的研究进展. 中国生物工程杂志, 2022, 42(4): 85-92.
[25]   Hou S J, Zhang Q Q, Sun Z M, et al. Research progress of WIND transcription factor responsing to wound stress and organ growth in plants. China Biotechnology, 2022, 42(4): 85-92.
[1] MIAO De-yu,GAO Kai,HUANG Sai,AN Xin-min. Establishment of Anther-cultured Plant Regeneration System of Populus tomentosa Elite Clone ‘LM50’[J]. China Biotechnology, 2022, 42(5): 46-57.
[2] Xu-peng ZHAO,Xiao-peng ZHAO,Hao SHI,Xue-mei CHEN,Ting JIANG,Yan LIU. Establishment of High Frequency Regeneration via Leaf Explants of ‘Guichang’ Kiwifruit (Actinidia chinensis)[J]. China Biotechnology, 2018, 38(10): 48-54.
[3] OU Qiao-ming, HOU Yi-qing, BAO Mei-nian, HU Da, CHEN Yu-liang, YUE Chun-ling. The Suspended Single Cell Culture and Embryogeny and Plant Regeneration of Pinellia ternata[J]. China Biotechnology, 2012, 32(10): 39-49.
[4] . Advances in Genetic Transformation of Panax Ginseng[J]. China Biotechnology, 2009, 29(09): 0-0.
[5] . Somatic Embryogenesis and Plant Regeneration of Cassava(Manihot esculenta Crantz)[J]. China Biotechnology, 2008, 28(12): 52-56.
[6] . Advances of Genetic Transformation of Tall Fescue[J]. China Biotechnology, 2006, 26(08): 15-21.