Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (8): 85-98    DOI: 10.13523/j.cb.2204042
    
Development Regulatory Factors Promoting Efficient Plant Genetic Transformation and Their Application in Maize
HE Wei1,2(),ZHU Mei-rui1,2,SHAN Hai-yan1,2,JIANG Yi-lin1,2,AN Xue-li1,2,3(),WAN Xiang-yuan1,2,3()
1. Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
3. Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
Download: HTML   PDF(2637KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The establishment of efficient genetic transformation systems can promote the study of plant functional genomics and the cultivation of new crop varieties. At present, low regeneration efficiency is one of the main technical barriers to the establishment of efficient genetic transformation systems in many plants. With the deepening of research on plant meristem and somatic embryo formation, some key regulatory genes have been identified, which are collectively called developmental regulators. The application of developmental regulatory factors in plant genetic transformation can effectively improve the establishment of plant meristem induction and regeneration ability, which provides an important opportunity to improve the efficiency of genetic transformation. In this paper, the research progress of seven types of developmental regulatory factors in improving the efficiency of plant genetic transformation was reviewed, with emphasis on the application of three types of developmental regulatory factors in promoting maize genetic transformation. Finally, the development direction of establishing efficient plant genetic transformation system was presented.



Key wordsPlant      Maize      Developmental regulators      Genetic transformation      Regenerative capacity     
Received: 18 April 2022      Published: 07 September 2022
ZTFLH:  Q819  
Cite this article:

HE Wei,ZHU Mei-rui,SHAN Hai-yan,JIANG Yi-lin,AN Xue-li,WAN Xiang-yuan. Development Regulatory Factors Promoting Efficient Plant Genetic Transformation and Their Application in Maize. China Biotechnology, 2022, 42(8): 85-98.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2204042     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I8/85

Fig.1 Schematic diagram of SERKs, LEC and WIND1 promoting plant transformation and regeneration (a)Schematic diagram of SERKs gene promoting somatic embryogenesis (b) Schematic diagram of the function of LEC gene to promote ectopic formation of somatic embryo or meristem (c) Diagram of WIND1 gene promoting callus formation (d) Plant genetic transformation process BRI1: BRASSINOSTEROID INSENSITIVE 1; CLV1:CLAVATA1; ER/ERL1: ERECTA/ER-LIKE1; PSKR1: PSKRECEPTOR1; HAE/HSL2: HAESA/HAE-LIKE2; EMS1: EXCESS MICROSPOROCYTES 1;FUS3: FUSCA3; ARR: ARABIDOPSIS RESPONSE REGULATOR; RAP2.6L: ERF113/RELATED TO AP2 6 LIKE; ESR1: ENHANCER OF SHOOT REGENERATION 1; ERF115: ETHYLENE RESPONSE FACTOR 115; PLT: PLETHORA
种类 发育调节因子 功能 基因名称 应用植物 转化提升效果 参考文献
1 SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) 编码的体细胞胚发生受体类激酶通过信号级联放大促进体细胞胚发生早期基因的表达 AtSERK1 拟南芥 使体细胞胚发生的能力增加3~4 倍 [11]
CcSERK1 咖啡 使体细胞胚数量增加2倍 [12]
2 LEAFY COTYLEDON1(LEC1) 编码的转录因子同源物(CCAAT盒结合因子HAP3亚基)诱导营养细胞中胚胎特异性基因的表达并促进体细胞胚样结构的形成 AtLEC1 拟南芥 [13]
LEAFY COTYLEDON2 (LEC2) 编码的B3结构域转录因子在胚胎发生中具有重要作用 AtLEC2 拟南芥 [14]
TcLEC2 可可树 体细胞胚生成效率提升2倍 [15]
3 WIND1 编码的AP2/ERF 转录因子通过ARR依赖性信号通路促进细胞去分化从而获得细胞增殖能力 AtWIND1 拟南芥、
油菜、番
茄和烟草
可绕过伤口和生长素预处理促进愈伤组织形成 [16-18]
4 BABY BOOM (BBM) 和WUSCHEL (WUS) BABY BOOM(BBM)编码的APETALA2 (AP2) 家族/乙烯反应元件结合因子 (AP2/ERF) 结构域转录因子通过促进细胞分裂和去分化的信号通路来增强体细胞胚发生;
WUSCHEL(WUS)编码的同源盒转录因子通过WUS-CLV反馈系统维持干细胞库的稳定和顶端分生组织的发育
ZmBbm;OsBbm;
ZmWus2
玉米、高粱、
甘蔗和水稻
实现顽固品种的转化和/或提高转化效率 [19]
AtWUS 苜蓿 可在无植物激素的再生系统中提高再生和转化效率 [20]
HvBBM;HvWUS 大麦 转化效率提升3倍多 [21]
BnBBM 辣椒 转化效率达到1%左右 [22-23]
AtBBM 烟草 增强了烟草的再生能力 [24]
TcBBM 可可树 显著增强了体细胞胚的增殖 [25]
AtWUS 棉花 显著提高胚性愈伤组织形成效率 [26-27]
AtWUS 咖啡 体细胞胚生成产量提升400% [28]
5 GROWTH-REGULATING FACTOR (GRF) 和 GRF-INTERACTING FACTOR (GIF) 生长调节因子(GRF)与转录辅因子GRF-INTERACTING FACTOR(GIF)相互作用并形成功能性转录复合体,然后调节干细胞与其快速分裂的子细胞之间的过渡,从而促进细胞增殖 TaGRF4;TaGIF1 小麦、水稻 再生效率分别提高7.8倍和2.1倍 [29]
ClGRF4;ClGIF1;
VvGRF4;VvGIF1
柑橘 再生效率提高4.7 倍
ZmGRF5-LIKE1;
ZmGRF5-LIKE2
玉米 提高转化效率约3倍 [30]
AtGRF5;
BvGRF5-LIKE
甜菜 实现了顽固品种的转化
GmGRF5-LIKE 大豆 促进转基因芽形成
AtGRF5;
HaGRF5-LIKE
向日葵 促进转基因芽形成
BnGRF5-LIKE 油菜 促进愈伤组织形成
ClGRF4;ClGIF1 西瓜 提高转化效率约9倍 [31]
6 WOX5 WUSCHEL家族基因 TaWOX5 小黑麦、黑麦、
大麦和玉米
大幅度提高了小麦等植物的转化效率 [32]
Table 1 Developmental regulators improving transformation in dicot and monocot species
Fig.2 Schematic diagram of BBM and WUS transcription factors promoting cell dedifferentiation and somatic embryogenesis CLV3: CLAVATA3; ARRs: ARABIDOPSIS RESPONSE REGULATORs; PKL: PICKLE; PRC1: Polycomb repressive complex 1; PRC2: Polycomb repressive complex 2; AGAL15: AGAMOUS-LIKE15; IAA30: Indole acetic acid inducible 30;TAA1: L-Tryptophan aminotransferase of Arabidopsis 1; YUC: YUCCA
Fig.3 Schematic diagram of GRF-GIF complex, WOX gene and LBD gene promoting plant transformation (a) Schematic diagram of GRF gene and GRF-GIF complex promoting genetic transformation in plants (b)Schematic diagram of WOX gene promoting genetic transformation in plants (c)LBD promotes callus formation miR396: microRNA396; BRM: BRAHMA; SWI/SNF: SWITCH/SUCROSE NONFERMENTING
基因名称 玉米自交系 农杆菌 形态发生因子
表达盒
形态发生因子
切除方式
优点 缺点 参考文献
ZmBBm,
ZmWus2
PHH5G
PHP38
PHN46
PH581
PH0AZ
LBA4404
(THY-)
Ubipro:BBm:pinII
Nospro:Wus2:pinII
干燥诱导启动子
Rab17pro控制CRE/loxP的切除系统
显著提高了多个玉米自交系的遗传转化效率,包括顽固基因型自交系 形态发生因子组成型表达,当切除不彻底时,会导致无法获得健康的T0植株 [19]
ZmBBm,
ZmWus2
B73 AGL1 Ubipro:BBm:nos
Nospro:Wus2: nos
干燥诱导启动子
Rab17pro控制CRE/loxP的切除系统
提高了顽固基因型玉米自交系B73的转化率,降低了基因型依赖性 同上 [47]
ZmBBm,
ZmWus2
B73
Mo17
PHH5G
PH1V69
PHR03
PH184C
PH1V5T
LBA4404
(THY-)
Zm-PLTPpro:BBm:
Os-T28
ZmAxig1pro:Wus2:
IN2-1
无切除 新的启动子使BBM不在根中表达,提高了T0健康植株的数目;绕过愈伤组织可直接形成健康的T0植株 过表达两种形态发生因子会导致副效应过大,同时消除难度较大,对T0植株的健康有不利影响 [86]
ZmBBm,
ZmWus2
ND88 EHA105 Ubipro:BBm:
Wus2:HSPt
干燥诱导启动子
Rab17pro控制CRE/loxP的切除系统
构建一个三元载体系统,结合WUSBBM,进一步增强了转化效率 形态发生因子组成型表达,当切除不彻底时,会导致无法获得健康的T0植株 [50]
ZmWus2 HC69
PH1V69
PHW52
PH4BAH
PH2KD1
PH28SV
PH2Y8G
PH4B9Z
LBA4404
(THY-)
Zm-PLTPpro:Wus2:
IN2-1
无切除 只使用WUS2基因,降低了在转化后、再生前切除形态发生基因的难度;同时添加CRC表达盒使得无须切除系统 [49]
Table 2 Application of morphogenetic regulators ZmBBM and ZmWUS2 in the improvement of maize genetic transformation system
[1]   Kausch A P, Nelson-Vasilchik K, Hague J, et al. Edit at will: Genotype independent plant transformation in the era of advanced genomics and genome editing. Plant Science, 2019, 281: 186-205.
doi: 10.1016/j.plantsci.2019.01.006
[2]   Binder M D, Hirokawa N, Windhorst U. Developmental regulatory genes, in encyclopedia of neuroscience. Berlin: Springer Berlin Heidelberg Heidelberg, 2009:965-965.
[3]   Schmidt E D, Guzzo F, Toonen M A, et al. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development (Cambridge, England), 1997, 124(10): 2049-2062.
doi: 10.1242/dev.124.10.2049
[4]   Pandey D K, Chaudhary B. Role of plant somatic embryogenesis receptor kinases (SERKs) in cell-to-embryo transitional activity: key at novel assorted structural subunits. American Journal of Plant Sciences, 2014, 5(21): 3177-3193.
doi: 10.4236/ajps.2014.521334
[5]   Li J M, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 1997, 90(5): 929-938.
pmid: 9298904
[6]   Clark S E, Williams R W, Meyerowitz E M. The CLAVATA1Gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 1997, 89(4): 575-585.
pmid: 9160749
[7]   He Y X, Zhou J G, Shan L B, et al. Plant cell surface receptor-mediated signaling - a common theme amid diversity. Journal of Cell Science, 2018, 131(2): jcs209353.
doi: 10.1242/jcs.209353
[8]   Ma X Y, Xu G Y, He P, et al. SERKing coreceptors for receptors. Trends in Plant Science, 2016, 21(12): 1017-1033.
doi: 10.1016/j.tplants.2016.08.014
[9]   Albrecht C, Russinova E, Kemmerling B, et al. Arabidopsis somatic embryogenesis receptor kinase proteins serve brassinosteroid-dependent and-independent signaling pathways. Plant Physiology, 2008, 148(1): 611-619.
doi: 10.1104/pp.108.123216
[10]   Li H Q, Cai Z P, Wang X J, et al. SERK receptor-like kinases control division patterns of vascular precursors and ground tissue stem cells during embryo development in Arabidopsis. Molecular Plant, 2019, 12(7): 984-1002.
doi: 10.1016/j.molp.2019.04.011
[11]   Hecht V, Vielle-Calzada J P, Hartog M V, et al. The Arabidopsis Somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiology, 2001, 127(3): 803-816.
pmid: 11706164
[12]   Pérez-Pascual D, Jiménez-Guillen D, Villanueva-Alonzo H, et al. Ectopic expression of the Coffea canephora SERK 1 homolog-induced differential transcription of genes involved in auxin metabolism and in the developmental control of embryogenesis. Physiologia Plantarum, 2018, 163(4): 530-551.
doi: 10.1111/ppl.12709
[13]   Lotan T, Ohto M A, Yee K M, et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell, 1998, 93(7): 1195-1205.
pmid: 9657152
[14]   Stone S L, Kwong L W, Yee K M, et al. LEAFY COTYLEDON2 encodes a B 3 domain transcription factor that induces embryo development. PNAS, 2001, 98(20): 11806-11811.
pmid: 11573014
[15]   Shires M E, Florez S L, Lai T S, et al. Inducible somatic embryogenesis in Theobroma cacao achieved using the DEX-activatable transcription factor-glucocorticoid receptor fusion. Biotechnology Letters, 2017, 39(11): 1747-1755.
doi: 10.1007/s10529-017-2404-4
[16]   Iwase A, Mitsuda N, Koyama T, et al. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Current Biology, 2011, 21(6): 508-514.
doi: 10.1016/j.cub.2011.02.020
[17]   Iwase A, Mitsuda N, Ikeuchi M, et al. Arabidopsis WIND 1 induces callus formation in rapeseed, tomato, and tobacco. Plant Signaling & Behavior, 2013, 8(12): e27432.
[18]   Iwase A, Mita K, Nonaka S, et al. WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed. Journal of Plant Research, 2015, 128(3): 389-397.
doi: 10.1007/s10265-015-0714-y
[19]   Lowe K, Wu E, Wang N, et al. Morphogenic regulators baby boom and wuschel improve monocot transformation. The Plant Cell, 2016, 28(9): 1998-2015.
doi: 10.1105/tpc.16.00124
[20]   Kadri A, Grenier de March G, Guerineau F, et al. WUSCHEL overexpression promotes callogenesis and somatic embryogenesis in Medicago truncatula gaertn. Plants (Basel, Switzerland), 2021, 10(4): 715.
[21]   Suo J Q, Zhou C L, Zeng Z H, et al. Identification of regulatory factors promoting embryogenic callus formation in barley through transcriptome analysis. BMC Plant Biology, 2021, 21(1): 145.
doi: 10.1186/s12870-021-02922-w
[22]   Irikova T, Grozeva S, Denev I. Identification of baby boom and leafy Cotyledon genes in sweet pepper (Capsicum annuum L.) genome by their partial gene sequences. Plant Growth Regulation, 2012, 67(2): 191-198.
doi: 10.1007/s10725-012-9676-4
[23]   Heidmann I, de Lange B, Lambalk J, et al. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Reports, 2011, 30(6): 1107-1115.
doi: 10.1007/s00299-011-1018-x pmid: 21305301
[24]   Srinivasan C, Liu Z R, Heidmann I, et al. Heterologous expression of the baby boom ap2/erf transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta, 2007, 225(2): 341-351.
doi: 10.1007/s00425-006-0358-1
[25]   Florez S L, Erwin R L, Maximova S N, et al. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biology, 2015, 15: 121.
doi: 10.1186/s12870-015-0479-4
[26]   Bouchabké-Coussa O, Obellianne M, Linderme D, et al. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Reports, 2013, 32(5): 675-686.
doi: 10.1007/s00299-013-1402-9 pmid: 23543366
[27]   Zheng W, Zhang X Y, Yang Z R, et al. AtWuschel promotes formation of the embryogenic callus in Gossypium hirsutum. PLoS One, 2014, 9(1): e87502.
doi: 10.1371/journal.pone.0087502
[28]   Arroyo-Herrera A, Ku Gonzalez A, Canche Moo R, et al. Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 2008, 94(2): 171-180.
doi: 10.1007/s11240-008-9401-1
[29]   Debernardi J M, Tricoli D M, Ercoli M F, et al. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology, 2020, 38(11): 1274-1279.
doi: 10.1038/s41587-020-0703-0 pmid: 33046875
[30]   Kong J X, Martin-Ortigosa S, Finer J, et al. Overexpression of the transcription factor GROWTH-REGULATING FACTOR5 improves transformation of dicot and monocot species. Frontiers in Plant Science, 2020, 11: 572319.
doi: 10.3389/fpls.2020.572319
[31]   Feng Q, Xiao L, He Y Z, et al. Highly efficient, genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene. Journal of Integrative Plant Biology, 2021, 63(12): 2038-2042.
doi: 10.1111/jipb.13199
[32]   Wang K, Shi L, Liang X N, et al. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nature Plants, 2022, 8(2): 110-117.
doi: 10.1038/s41477-021-01085-8 pmid: 35027699
[33]   Braybrook S A, Harada J J. LECs go crazy in embryo development. Trends in Plant Science, 2008, 13(12): 624-630.
doi: 10.1016/j.tplants.2008.09.008 pmid: 19010711
[34]   Jo L, Pelletier J M, Harada J J. Central role of the LEAFY COTYLEDON1 transcription factor in seed development. Journal of Integrative Plant Biology, 2019, 61(5): 564-580.
doi: 10.1111/jipb.12806
[35]   Song J P, Xie X, Chen C, et al. LEAFY COTYLEDON1 expression in the endosperm enables embryo maturation in Arabidopsis. Nature Communications, 2021, 12: 3963.
doi: 10.1038/s41467-021-24234-1
[36]   Liu B L, Sun G, Liu C J, et al. LEAFY COTYLEDON 2: a regulatory factor of plant growth and seed development. Genes, 2021, 12(12): 1896.
doi: 10.3390/genes12121896
[37]   Stone S L, Braybrook S A, Paula S L, et al. Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(8): 3151-3156.
[38]   Iwase A, Harashima H, Ikeuchi M, et al. WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. The Plant Cell, 2016, 29(1): 54-69.
doi: 10.1105/tpc.16.00623
[39]   Jha P, Kumar V. BABY BOOM (BBM): a candidate transcription factor gene in plant biotechnology. Biotechnology Letters, 2018, 40(11-12): 1467-1475.
doi: 10.1007/s10529-018-2613-5
[40]   Jha P, Ochatt S J, Kumar V. WUSCHEL: a master regulator in plant growth signaling. Plant Cell Reports, 2020, 39(4): 431-444.
doi: 10.1007/s00299-020-02511-5
[41]   Li M F, Wrobel-Marek J, Heidmann I, et al. Auxin biosynthesis maintains embryo identity and growth during BABY BOOM-induced somatic embryogenesis. Plant Physiology, 2022, 188(2): 1095-1110.
doi: 10.1093/plphys/kiab558
[42]   Boutilier K, Offringa R, Sharma V K, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. The Plant Cell, 2002, 14(8): 1737-1749.
doi: 10.1105/tpc.001941
[43]   Deng W, Luo K M, Li Z G, et al. A novel method for induction of plant regeneration via somatic embryogenesis. Plant Science, 2009, 177(1): 43-48.
doi: 10.1016/j.plantsci.2009.03.009
[44]   Laux T, Mayer K F, Berger J, et al. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development (Cambridge, England), 1996, 122(1): 87-96.
doi: 10.1242/dev.122.1.87
[45]   Mayer K F X, Schoof H, Haecker A, et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998, 95(6): 805-815.
pmid: 9865698
[46]   Gordon-Kamm B, Sardesai N, Arling M, et al. Using morphogenic genes to improve recovery and regeneration of transgenic plants. Plants (Basel, Switzerland), 2019, 8(2): 38.
[47]   Mookkan M, Nelson-Vasilchik K, Hague J, et al. Selectable marker independent transformation of recalcitrant maize inbred B73 and Sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Reports, 2017, 36(9): 1477-1491.
doi: 10.1007/s00299-017-2169-1
[48]   Anand A, Wu E, Li Z, et al. High efficiency Agrobacterium-mediated site-specific gene integration in maize utilizing the FLP-FRT recombination system. Plant Biotechnology Journal, 2019, 17(8): 1636-1645.
[49]   Hoerster G, Wang N, Ryan L, et al. Use of non-integrating Zm-Wus 2 vectors to enhance maize transformation. In Vitro Cellular & Developmental Biology - Plant, 2020, 56(3): 265-279.
[50]   Zhang Q, Zhang Y, Lu M H, et al. A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize. Plant Physiology, 2019, 181(4): 1441-1448.
doi: 10.1104/pp.19.00767
[51]   Deng W, Luo K M, Li Z G, et al. A novel method for induction of plant regeneration via somatic embryogenesis. Plant Science, 2009, 177(1): 43-48.
doi: 10.1016/j.plantsci.2009.03.009
[52]   Kim J H. Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants. BMB Reports, 2019, 52(4): 227-238.
doi: 10.5483/BMBRep.2019.52.4.051
[53]   Liu D M, Song Y, Chen Z X, et al. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiologia Plantarum, 2009, 136(2): 223-236.
doi: 10.1111/j.1399-3054.2009.01229.x
[54]   Rodriguez R E, Mecchia M A, Debernardi J M, et al. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development (Cambridge, England), 2010, 137(1): 103-112.
doi: 10.1242/dev.043067
[55]   Luo G B, Palmgren M. GRF-GIF chimeras boost plant regeneration. Trends in Plant Science, 2021, 26(3): 201-204.
doi: 10.1016/j.tplants.2020.12.001
[56]   Lee K, Seo P J. Dynamic epigenetic changes during plant regeneration. Trends in Plant Science, 2018, 23(3): 235-247.
doi: 10.1016/j.tplants.2017.11.009
[57]   van der Knaap E, Kim J H, Kende H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiology, 2000, 122(3): 695-704.
pmid: 10712532
[58]   Omidbakhshfard M A, Proost S, Fujikura U, et al. Growth-regulating factors (GRFs): a small transcription factor family with important functions in plant biology. Molecular Plant, 2015, 8(7): 998-1010.
doi: 10.1016/j.molp.2015.01.013 pmid: 25620770
[59]   Pan W B, Cheng Z T, Han Z G, et al. Efficient genetic transformation and CRISPR/Cas9-mediated genome editing of watermelon assisted by genes encoding developmental regulators. Journal of Zhejiang University-SCIENCE B, 2022, 23(4): 339-344.
doi: 10.1631/jzus.B2200119
[60]   Haecker A, Gross-Hardt R, Geiges B, et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development (Cambridge, England), 2004, 131(3): 657-668.
doi: 10.1242/dev.00963
[61]   Van der Graaff E, Laux T, Rensing S A. The WUS homeobox-containing (WOX) protein family. Genome Biology, 2009, 10(12): 248.
doi: 10.1186/gb-2009-10-12-248 pmid: 20067590
[62]   Laux T, Mayer K F, Berger J, et al. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development (Cambridge, England), 1996, 122(1): 87-96.
doi: 10.1242/dev.122.1.87
[63]   Mukherjee K, Brocchieri L, Bürglin T R. A comprehensive classification and evolutionary analysis of plant homeobox genes. Molecular Biology and Evolution, 2009, 26(12): 2775-2794.
doi: 10.1093/molbev/msp201 pmid: 19734295
[64]   Vandenbussche M, Horstman A, Zethof J, et al. Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis. The Plant Cell, 2009, 21(8): 2269-2283.
doi: 10.1105/tpc.109.065862
[65]   Sarkar A K, Luijten M, Miyashima S, et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature, 2007, 446(7137): 811-814.
doi: 10.1038/nature05703
[66]   Cheng S F, Huang Y L, Zhu N, et al. The rice WUSCHEL-related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response. Gene, 2014, 549(2): 266-274.
doi: 10.1016/j.gene.2014.08.003
[67]   Park S O, Zheng Z G, Oppenheimer D G, et al. The PRETTY FEW SEEDS2 gene encodes an Arabidopsis homeodomain protein that regulates ovule development. Development (Cambridge, England), 2005, 132(4): 841-849.
doi: 10.1242/dev.01654
[68]   Zhang Z J, Laux T. The asymmetric division of the Arabidopsis zygote: from cell polarity to an embryo axis. Sexual Plant Reproduction, 2011, 24(2): 161-169.
doi: 10.1007/s00497-010-0160-x
[69]   Deveaux Y, Toffano-Nioche C, Claisse G, et al. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evolutionary Biology, 2008, 8: 291.
doi: 10.1186/1471-2148-8-291 pmid: 18950478
[70]   Ohmori Y, Tanaka W, Kojima M, et al. WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice. The Plant Cell, 2013, 25(1): 229-241.
doi: 10.1105/tpc.112.103432
[71]   Ji J B, Strable J, Shimizu R, et al. WOX4 promotes procambial development. Plant Physiology, 2009, 152(3): 1346-1356.
doi: 10.1104/pp.109.149641
[72]   Breuninger H, Rikirsch E, Hermann M, et al. Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Developmental Cell, 2008, 14(6): 867-876.
doi: 10.1016/j.devcel.2008.03.008 pmid: 18539115
[73]   Yadav R K, Perales M, Gruel J, et al. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes & Development, 2011, 25(19): 2025-2030.
doi: 10.1101/gad.17258511
[74]   Wang F X, Shang G D, Wu L Y, et al. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Developmental Cell, 2020, 54(6): 742-757.e8.
doi: 10.1016/j.devcel.2020.07.003
[75]   Verma S, Attuluri V P S, Robert H S. Transcriptional control of Arabidopsis seed development. Planta, 2022, 255(4): 90.
doi: 10.1007/s00425-022-03870-x
[76]   Hu X M, Xu L. Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiology, 2016, 172(4): 2363-2373.
doi: 10.1104/pp.16.01067
[77]   Ikeuchi M, Iwase A, Ito T, et al. Wound-inducible WUSCHEL-RELATED HOMEOBOX 13 is required for callus growth and organ reconnection. Plant Physiology, 2022, 188(1): 425-441.
doi: 10.1093/plphys/kiab510
[78]   Zhao S, Jiang Q T, Ma J, et al. Characterization and expression analysis of WOX5 genes from wheat and its relatives. Gene, 2014, 537(1): 63-69.
doi: 10.1016/j.gene.2013.12.022
[79]   Fan M Z, Xu C Y, Xu K, et al. Lateral organ boundaries domain transcription factors direct callus formation in Arabidopsis regeneration. Cell Research, 2012, 22(7): 1169-1180.
doi: 10.1038/cr.2012.63
[80]   Okushima Y, Fukaki H, Onoda M, et al. ARF7 and ARF 19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. The Plant Cell, 2007, 19(1): 118-130.
doi: 10.1105/tpc.106.047761
[81]   Liu J C, Sheng L H, Xu Y Q, et al. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. The Plant Cell, 2014, 26(3): 1081-1093.
doi: 10.1105/tpc.114.122887
[82]   Xu C Y, Cao H F, Zhang Q Q, et al. Control of auxin-induced callus formation by bZIP59-LBD complex in Arabidopsis regeneration. Nature Plants, 2018, 4(2): 108-115.
doi: 10.1038/s41477-017-0095-4
[83]   李强, 苏同兵, 于拴仓, 等. 大白菜LBD基因参与愈伤组织发生及植株再生初探. 华北农学报, 2015, 30(3): 83-89.
[83]   Li Q, Su T B, Yu S C, et al. Primary study on LBD genes involving in callus formation and plant regeneration of Chinese cabbage. Acta Agriculturae Boreali-Sinica, 2015, 30(3): 83-89.
[84]   段镇淳, 张昭阳, 林拥军. 水稻愈伤诱导过程中生长素通路的初步研究. 华中农业大学学报, 2021, 40(3): 98-104.
[84]   Duan Z C, Zhang Z Y, Lin Y J. Auxin pathway in process of rice callus induction. Journal of Huazhong Agricultural University, 2021, 40(3): 98-104.
[85]   Wallington T J, Anderson J E, Mueller S A, et al. Corn ethanol production, food exports, and indirect land use change. Environmental Science & Technology, 2012, 46(11): 6379-6384.
doi: 10.1021/es300233m
[86]   Lowe K la Rota M, Hoerster G, et al. Rapid genotype "independent" Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cellular & Developmental Biology Plant: Journal of the Tissue Culture Association, 2018, 54(3): 240-252.
[87]   Jiang Y L, Sun K T, An X L. CRISPR/Cas system: applications and prospects for maize improvement. ACS Agricultural Science & Technology, 2022, 2(2): 174-183.
[1] HUANG Yao-hui,JIAO Yue,YE Ji-ming. Application of Genetically Modified Crops in South Africa and Its Enlightenment to China[J]. China Biotechnology, 2022, 42(5): 163-172.
[2] MIAO De-yu,GAO Kai,HUANG Sai,AN Xin-min. Establishment of Anther-cultured Plant Regeneration System of Populus tomentosa Elite Clone ‘LM50’[J]. China Biotechnology, 2022, 42(5): 46-57.
[3] LIU Xu-xia,YANG An-ke. An Analysis of the U.S. SECURE Rule and Its Enlightenment to China[J]. China Biotechnology, 2021, 41(9): 126-135.
[4] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[5] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[6] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[7] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[8] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[9] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[10] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[11] CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity[J]. China Biotechnology, 2020, 40(9): 18-27.
[12] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[13] Jing REN,Wan-nong ZOU,Min SONG. Research on the Changing Trend of the New Pattern of International Seed Industry Competition Formed by the Merger of Multinational Seed Industry Companies——Take Intellectual Property as an Example[J]. China Biotechnology, 2019, 39(7): 108-117.
[14] WANG You-hua,ZOU Wan-nong,LIU Xiao-qing,WANG Zhaohua,SUN Guo-qing. Global Patent Analysis and Technology Prospect of Genetically Modified Maize[J]. China Biotechnology, 2019, 39(12): 83-94.
[15] MA Ya-ting,LIU Zhen-ning,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Advances in Production of Plant Isoquinoline Alkaloids in Heterologous Microbes[J]. China Biotechnology, 2019, 39(11): 123-131.