Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (8): 21-29    DOI: 10.13523/j.cb.2203056
    
Overexpression of TPP from Larix gmelinii Enhanced Salt Tolerance of the Transgenic Arabidopsis thaliana
ZHANG Yan-xia1,ZHANG Xu-ting1,JIA Yong-hong2,LEI Feng-yan3,WANG Jing1,WANG Rui-gang1,4,LI Guo-jing1,**()
1. Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
2. Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
3. Agriculture and Animal Husbandry Bureau of Ongniud Banner of Tongliao City, Tongliao 028000, China
4. Inner Mongolia Enterprise Key Laboratory of Tree Breeding, Mengshu Ecological Construction Group Co.,Ltd., Hohhot 011517, China
Download: HTML   PDF(2633KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Larix gmelinii is a very important coniferous tree species for afforestation. It has the characteristics of rapid growth in early stage, strong stress resistance and good ecological benefits. Trehalose participates in the regulation of drought, cold, salt damage and other stresses. Trehalose-6-phosphate phosphatase (TPP) is an important enzyme in the trehalose synthesis pathway. In this study, the full-length sequence of LgTPPI.1 was screened from the transcriptome of L. gmelinii under stress and its coding sequence(CDS) was cloned. The recombinant vector was constructed and homozygous lines of transgenic Arabidopsis thaliana overexpressing LgTPPI.1 were obtained. The results showed that the full-length CDS of LgTPPI.1 was 1 236 bp, encoding 411 amino acids; the expression level of LgTPPI.1 was lower in roots and stems, but higher in needles. Under salt treatment, the LgTPPI.1 overexpression lines conferred stronger tolerance than the wild type A. thaliana, with elevated trehalose and proline content; increased superoxide dismutase(SOD) and catalase(CAT) activity and up-regulated expresssion of the stress-responsive marker genes. These results indicated that gymnosperm utilized similar trehalose pathway as angiosperm to telerate abiotic stress. This study provided a theoretical basis for further analysis of the function of trehalose synthetic genes and the response mechanism of conifers under stress.



Key wordsLarix gmelinii      Salt stresses      Trehalose      TPP      Arabidopsis thaliana     
Received: 28 March 2022      Published: 07 September 2022
ZTFLH:  Q812  
Corresponding Authors: Guo-jing LI     E-mail: liguojing@imau.edu.cn
Cite this article:

ZHANG Yan-xia,ZHANG Xu-ting,JIA Yong-hong,LEI Feng-yan,WANG Jing,WANG Rui-gang,LI Guo-jing. Overexpression of TPP from Larix gmelinii Enhanced Salt Tolerance of the Transgenic Arabidopsis thaliana. China Biotechnology, 2022, 42(8): 21-29.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2203056     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I8/21

引物名称 引物序列(5'→3') 引物用途
LgTPPI.1-S(HA) CGCCTCCCTCGTCGACATGAAAATGGCTGCAAGGTC Gene cloning
LgTPPI.1-A(HA) GATCGGGGAAATTCGAGCTCTCAAGATTCCACTTGTTCTGTAG Gene cloning
QAtEF1α-S AGAAGGGTGCCAAATGATGAG Real-time PCR
QAtEF1α-A GGAGGGAGAGAGAAAGTCACAGA Real-time PCR
QSOS1-S CTCAAGGTCTCGTTTCAGCCA Real-time PCR
QSOS1-A CCATCGTATTTTGCCTTGTGCT Real-time PCR
QRD29A-S AAGTGAGTTGGGAGGCAGTG Real-time PCR
QRD29A-A AAGTTCACAAACAGAGGCATCA Real-time PCR
QNHX-S GTTGTGATTTGGTGGTCTGGTCT Real-time PCR
QNHX-A GTTCTGGTGCGGTAATAGGTAGC Real-time PCR
QTubulin-S AGCGACAATGAGGGAGTGC Real-time PCR
QTubulin-A TACCGGCACCTGTCTCACTG Real-time PCR
QTPPI.1-S TAAGGTTTTAGAACTCCGTCCA Real-time PCR
QTPPI.1-A CCTACTGCTCCTATCTTCCACC Real-time PCR
Table 1 The list of primers used in this study
Fig.1 Electrophoresis gel of the cloning products of LgTPPI.1 and the digestion verification of the recombinant vector (a)PCR products of LgTPPI.1 CDS (b)35SHA-LgTPPI.1 recombinant vector digestion and identification M1: DL2000 marker; M2: DL10000 marker; Lanes 1 and 2: PCR product of LgTPPI.1 CDS; Lanes 3: 35SHA-LgTPPI.1 recombinant vector digestion with Sal I and Sac I;Lane 4: Plasmid control
Fig.2 The gene and its encoded protein sequence of LgTPPI.1
Fig.3 Phylogenetic analysis of LgTPPI.1 and its homologous proteins from A. thaliana
Fig.4 The expression pattern analysis of LgTPPI.1 in different tissues of L. gmelinii
Fig.5 Detection of LgTPPI.1 expression level of the homozygous lines expressing 35SHA-LgTPPI.1 in A. thaliana
Fig.6 Comparison of tolerance to salt stress between the LgTPPI.1 overexpressing lines and wild type A. thaliana
Fig.7 Physiological indicators assay of LgTPPI.1 overexpressing lines and wild type A. thaliana under salt stress
Fig.8 Detection of stress responsive marker genes of the LgTPPI.1 overexpressing lines and wild type A. thaliana
Fig.9 Comparison of the trehalose content of the homozygous lines overexpressing LgTPPI.1 and wild type A. thaliana before and after salt stress
[1]   Schiraldi C, di Lernia I, de Rosa M. Trehalose production: exploiting novel approaches. Trends in Biotechnology, 2002, 20(10): 420-425.
pmid: 12220904
[2]   Kaplan F, Kopka J, Haskell D W, et al. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiology, 2004, 136(4): 4159-4168.
pmid: 15557093
[3]   Pramanik M H R, Imai R. Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Molecular Biology, 2005, 58(6): 751-762.
doi: 10.1007/s11103-005-7404-4 pmid: 16240171
[4]   Han B Y, Fu L L, Zhang D, et al. Inter species and intra species analysis of trehalose contents and the biosynthesis pathway gene family reveals crucial roles of trehalose in osmotic-stress tolerance in cassava. International Journal of Molecular Sciences, 2016, 17(7): 1077.
doi: 10.3390/ijms17071077
[5]   Iturriaga G, Cushman M A F, Cushman J C. An EST catalogue from the resurrection plant Selaginella lepidophylla reveals abiotic stress-adaptive genes. Plant Science, 2006, 170(6): 1173-1184.
doi: 10.1016/j.plantsci.2006.02.004
[6]   Ambastha V, Tiwari B S. Cellular water and anhydrobiosis in plants. Journal of Plant Growth Regulation, 2015, 34(3): 665-671.
doi: 10.1007/s00344-015-9497-6
[7]   Ge L F, Chao D Y, Shi M, et al. Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta, 2008, 228(1): 191-201.
doi: 10.1007/s00425-008-0729-x
[8]   冯小雨. 小麦TaTPP7基因调控抗旱及耐盐机制研究. 杨陵: 西北农林科技大学, 2021.
[8]   Feng X Y. Regulation of drought and salt tolerance by TaTPP7 gene in wheat. Yangling: Northwest Agriculture & Forestry University, 2021.
[9]   Acosta-Pérez P, Camacho-Zamora B D, Espinoza-Sánchez E A, et al. Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase genes and analysis of its differential expression in maize (Zea mays) seedlings under drought stress. Plants (Basel, Switzerland), 2020, 9(3): 315.
[10]   丁泽红, 吴春来, 颜彦, 等. 木薯海藻糖-6-磷酸酯酶MeTPP6基因克隆及其表达分析. 江苏农业科学, 2019, 47(6): 31-35.
[10]   Ding Z H, Wu C L, Yan Y, et al. Cloning and expression analysis of trehalose-6-phosphate phosphatase gene MeTPP6 in cassava. Jiangsu Agricultural Sciences, 2019, 47(6): 31-35.
[11]   赵天济. 柠条锦鸡儿海藻糖-6-磷酸磷酸酯酶基因的克隆及特性分析. 呼和浩特: 内蒙古大学, 2016.
[11]   Zhao T J. Isolation and characterization of trehalose-6-phosphate phosphatase gene from Caragana korshinskii. Hohhot: Inner Mongolia University, 2016.
[12]   吕程佳, 李芳, 王梦荷, 等. 茶树TPP基因家族的鉴定及其对低温胁迫的响应. 南京农业大学学报, 2022, 45(1): 47-55.
[12]   Lü C J, Li F, Wang M H, et al. Identification and response of TPP gene family to low temperature stress in tea plant. Journal of Nanjing Agricultural University, 2022, 45(1): 47-55.
[13]   李辉, 李德芳, 邓勇, 等. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析. 作物学报, 2020, 46(12): 1914-1922.
doi: 10.3724/SP.J.1006.2020.04006
[13]   Li H, Li D F, Deng Y, et al. Cloning of the key enzyme gene HcTPPJ in trehalose biosynthesis of kenaf and its expression in response to abiotic stress in kenaf. Acta Agronomica Sinica, 2020, 46(12): 1914-1922.
doi: 10.3724/SP.J.1006.2020.04006
[14]   马常耕, 孙晓梅. 我国落叶松遗传改良现状及发展方向. 世界林业研究, 2008, 21(3): 58-63.
[14]   Ma C G, Sun X M. Larch genetic improvement and its future development in China. World Forestry Research, 2008, 21(3): 58-63.
[15]   白晓明. 长白落叶松LoCAT基因的克隆及功能分析. 哈尔滨: 东北林业大学, 2019.
[15]   Bai X M. Cloning and function analysis of LoCAT gene from Larix olgensis. Harbin: Northeast Forestry University, 2019.
[16]   朱虹. TPPB的克隆及抗旱功能分析. 福州: 福建农林大学, 2019.
[16]   Zhu H. Cloning and drought resistance function analysis of plant trehalose synthesis pathway gene TPPB. Fuzhou: Fujian Agriculture and Forestry University, 2019.
[17]   Krasensky J, Broyart C, Rabanal F A, et al. The redox-sensitive chloroplast trehalose-6-phosphate phosphatase AtTPPD regulates salt stress tolerance. Antioxidants & Redox Signaling, 2014, 21(9): 1289-1304.
[18]   Lin Q F, Yang J, Wang Q L, et al. Overexpression of the trehalose-6-phosphate phosphatase family gene AtTPPF improves the drought tolerance of Arabidopsis thaliana. BMC Plant Biology, 2019, 19(1): 381.
doi: 10.1186/s12870-019-1986-5
[19]   Lin Q F, Wang S, Dao Y H, et al. Arabidopsis thaliana trehalose-6-phosphate phosphatase gene TPPI enhances drought tolerance by regulating stomatal apertures. Journal of Experimental Botany, 2020, 71(14): 4285-4297.
doi: 10.1093/jxb/eraa173
[20]   Nuccio M L, Wu J, Mowers R, et al. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnology, 2015, 33(8): 862-869.
doi: 10.1038/nbt.3277
[21]   Jiang D G, Chen W T, Gao J E, et al. Overexpression of the trehalose-6-phosphate phosphatase OsTPP3 increases drought tolerance in rice. Plant Biotechnology Reports, 2019, 13(3): 285-292.
doi: 10.1007/s11816-019-00541-4
[22]   王佳丽, 黄贤金, 钟太洋, 等. 盐碱地可持续利用研究综述. 地理学报, 2011, 66(5): 673-684.
[22]   Wang J L, Huang X J, Zhong T Y, et al. Review on sustainable utilization of salt-affected land. Acta Geographica Sinica, 2011, 66(5): 673-684.
[1] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[2] Jing-yun FENG,Ling-qia SU,Jing WU. Synthesis and Extraction of Trehalose from Multiple Enzymes Reaction[J]. China Biotechnology, 2019, 39(7): 65-70.
[3] Li DU,Ling-qia SU,Jing WU. Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation[J]. China Biotechnology, 2019, 39(5): 96-104.
[4] LIU Cui-cui, HU Meng-die, WANG Zhi, DAI Jun, YAO Juan, LI Pei, LI Zhi-jun, CHEN Xiong, LI Xin. Metabolic Characteristics of Intracellular Trehalose Accumulation in Zygosaccharomyces rouxii[J]. China Biotechnology, 2017, 37(9): 41-47.
[5] ZHAO Yi-jin, WANG Teng-fei, WANG Jun-qing, WANG Rui-ming. Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores[J]. China Biotechnology, 2017, 37(1): 71-80.
[6] LI Meng-yue, WANG Teng-fei, WANG Jun-qing, ZHAO Yi-jin, CHENG Cheng, WANG Rui-ming. Expression of Trehalose Synthase Gene in Pichia pastoris[J]. China Biotechnology, 2016, 36(2): 73-80.
[7] FANG Hua, LI Hao. The Roles of Trehalose and Heat Shock Proteins for Enhancing Ethanol Tolerance of Saccharomyces cerevisiae[J]. China Biotechnology, 2014, 34(06): 84-89.
[8] LUO Feng, DUAN Xu-guo, SU Ling-qia, WU Jing. Cloning,Expression and Fermentation Optimization of Thermobifida fusca Trehalose Synthase Gene in E.coli[J]. China Biotechnology, 2013, 33(8): 98-104.
[9] . Co-Immobilization of Permeabilized Meiothermus sp. Cells Containing Trehalose Synthase[J]. China Biotechnology, 2007, 27(11): 32-36.